
UNCLASSIFIFD ccr " ! of33c p..e

AD-A261 350

I DA PAPER P-2701

SOFTWARE TESTING INITIATIVE FOR
STRATEGIC DEFENSE SYSTEMS

DTIC
L ELECTEQMAR 9 n"

Bill Brykczynski, Task Leader U L I
Reginald N, Meeson Lu
Christine Youngblut
David A. Wheeler

March 1992

93 3 8 074 93-04952
Prepared for

Strategic Defense Initiative Organization

AMp•in a, fo pos ifeu, NumOW" -llbue: ,u1JMM 11.1963.

SA INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street. Alexandria. Virginia 223 11-1772

UNCLASSIFIED IDA Lai No. HO 92-041141

DEFINITION$
ID ob~Ae Oft$ e foltoer togevaw*Ut to fled the a. vfti of aS wors

Rapofft

1401110M ait the Most aa 11t"lt~a' agE iMust Ut ~lty 9*&U#4vVtfisituft ICA 10 0AfS~It
they Normally eso"" ("Viott of maow PtO##cti g tsI "S 1. sawtr 6481149 "
dirntwn Aflectlag Major protrais, (a) address rtits" of Ut4*t0M eexcet to m
Executive 3iach. I the res C Ogftti Tlehe "61wi, or lei am#"l~ It"*# testl 110*
sisifianta oetoemtc imoeluaums WA* ftpom are tio ftwtd *o* Ponefta oufs *w#U
to suremo tht"rhg quality sod flifeafts, to ft. pobloor, Ibed. "- May alt IWtsissi
Wy Me Arnstdeat of IDA

Group Reports
Grota 116N it etta ll ft hodlep end rnut of I A 04 WWOit4i Shad ru Woo"g Mep
paneta composed 04uof r witmovals atiwes" g e aa~sm"oseM 0M itt omee k
the subject of ao IDA ReOW, IDA Snap41"O Wteut arevuiveo by 00 x~ dms*af
respowatehb tor ftppelr and sellers as astsle IV CA Is irnswm M"b k"e 1waty #w
rtlvisie to ft pubtemot studied. and awe roloaed In a. Puttudeel of ICA

Papers
Papers. she 0aethOrtatv -i carefully reasidefd psidista of 10A. sidirou stivess, amt

an narrower to sirI man Mose covered fo Aessoul IDA paers awe fetewd to goU"r
the Mhy MWeft It' sih tandads t eapted of tefereedow pa to waft oa pre~af seo of
forinal Apacy rpoll"

Documeftst
1DA Doctellfts. art vaud kar a. cueumeeo a. Megotas or a. * o at (statt to rweti
slibulative we", doese Is gaito remss~e iadres. fiI) to regard ofe precetuis*11 of
confaeslcol24 lad uueeiap. (c)Is Ato u avaldable miResrt"m sat toofafko results of
MIMgS. III) to record duea desutowd te aM Couste of so ieetsttgese. or (#I to towor

information hIM Is eonasetaty ouaatyed sadE vaesutladl I%* ~m ate ICA Doismeots
is sAlted to Wheir contest lad Wusmae see,

Thle work replorted w this docerstW was coodsiclod ~~e confracl ODA 903 It C OWP for
ONa Depaumeet of Delassae. The pabfitatos" of this ICA focivni" # Woe 4alistaft
eadorsament by the D~wepalm" of Does"m. nor shlould Iftt cat~tzta be corutreed! no
rit""ctui a. oittiel poliftlo of that Agency

1992 Inmatet "or Deftai "Iayssn

i ..~an mmw4 Z aa dwtiod.a .. m m m~ 't-~. ~ .,
IREPORT DOCUMENTATION PAGEi

Davis Highway, Suite 1204, Aflinjtoli. VA 22202-4302, nW to th O~* .1 ',Wg*4 W4~ P~ape-uv o.m ~ ~ .

I - AGENCY USE ONLY (Lzave WNW 2- RFPORI~)AIV 3 Wilk*! Fi: 1'ANDD:,Lý (0 1XSMurch 1992t Filial

4. TITrE AND SUBTITLE I",G V %!ii k..

Software Testing Iniutiative for Strategic Defense Systermu \1 DA (X)o 99 (X tKII3

"I a4k T-R 2 507 21

6 ALTHOR(S)

Bill Brykczynski, Reginald N. Meeson. Christine Youngblut. David Aý
Wheeler

1. PERFORMING ORGANIZATION NAWIi(S) AND ADDRkESS(|*V) 4J-(A(%IG P)RU.VGLA_, Ki.s .)f

Institute for Defense Analyses (IDA) IDA Paper 1.-2701
1801 N. Beauregard St.
Alexandria. VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(bff-S I S .•)NV,*UM Kl.•('4 G 'Ai K("s

SDIO
Room IE 149, The Pentagon
Washington, D.C. 20301-7100

II. SU PPLEENTARY NOTES

12L. DISTRIBUTION/AVAILABCLITY STATEMENT 1ib DSW•BL'T;ION CODIE
Approved for public release, unlimited distribution: January 11, 1993. 2A

13. ABSTRACT (M-=tmam 200 words)

SDIO is planning to develop and deploy a ballistic missile defense system called Global Protection Against
Limited Strikes (GPALS). Testing of GPALS software will play a critical role in ensuring the cost-effective
development and reliable execution of the GPALS system. An earlier IDA study examined the states of the art
and practice in the field of software testing. The study identified deficiencies in SDI software testing
capabilities. and recommended that SDIO launch a technical initiative to address these deficienicies. Thc
current study lays the groundwork for this initiative. Emphasis is placed on three areas: (1) improving current
and near-term SDI software testing practices by promoting consistent use of effective technology. (2)
identifying promising new testing techniques that can add significantly to the reliability, cost-effectiveness. and
quality of SDI software, and (3) fostering research into several fundamental problerris of testing large-scale.
concurrent, distributed, real-time, and fault-tolerant software systems.

14. SUBJECT TERMS i MEBER OF PAGES
Software Testing, Technology Transition, Global Protection Against Limited 78
Strikes (OPALS), SDI, Requests for Proposal (RFP). 16. PRICE CODE

17.SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITYCLASSIFICATION 20. LIMITATION"OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01 -280-5300 Standud Form 298 (Rev. 2-89)
Prftcribed by ANSI Sid. Z39.-I5

298-102

UNCLASSIFIED

I DA P'A PL R P,27 IU

SOFTWARE TESTING INITIATIVE FOR
STRATEGIC DEFENSE SYSTEMS

Bill Brvkczynski. Task• Leader

Reginald N. Meeson
Christine Youngblut

David A. Wheeler

March 1992

Aiil W public i ulaile. unlimiten d#A~ "n Jasm v 11, 1113.l/
Ac.(t-,, te? o

N-11S CWA&I
rI P: TAF,

I DA J,',ol•'

INSTITUTE FOR DEFENSE ANALYSES Iy B

Contract MDA 903 89 C 0003 01tAr ibu tion I
Task T-R2-597.21

Availablity Codes

LAvail ASSdFo

UNCLASSIFIED "

PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) for the
Strategic Defense Initiative Organization (SDIO), under contract MDA 903 89 C 0003,
Subtask Order T-R2-597.21, "Software Testing of Strategic Defense Systems." The objec-
tive of the subtask is to assist the SDIO in planning and monitoring software testing
research, development, and practices.

In support of this objective, IDA had previously developed a high-level concept
of a research and development initiative that would address deficiencies in required SDI
software testing technology. The purpose of this paper is to provide SDIO with a set of
recommendations and supporting analysis to begin a comprehensive software testing ini-
tiative in fiscal year 1993.

This paper was reviewed by the following members of IDA: Dr. Robert JI
* Atwell, Dr. Dennis W. Fife, Dr. Randy L. Garrett, Dr. Karen D. Gordon, Ms. Audrey

A. Hook, Dr. Richard J. Ivanetich, and Mr. Terry Mayfield.

IV

1

I

II

,, plI ill IIII n i i • . m

EXECUTIVE SUMMARY

With the Missile Defense Act of 1991, Congress appropriated funds for the
development and deployment of ballistic missile defense systems capable of protecting
the United States, as well as US forces, friends, and allies overseas. Several of the
experimental weapon and sensor program3 funded by the Strategic D)efense Initiative
Organization (SDIO) will make the transition to full-scale development in the next few
years. All of these systems will rely upon software to function properly.

Historically, 50% to 80% of the c~st of software development is spent in testing.
There is no reason to expect that testing will play a lesser role in Strategic Defense Initia-
tive (SDI) software development. Clearly, software testing will play a critical role in
developing reliable and cost-effective SDI software. However, previous studies by the
Institute for Defense Analyses (IDA) have suggested that conventional testing methods
sufficient for small-scale sequential software may not be adequate for testing software for
strategic defense systems. These methods are largely ad hoc and may not scale up to the
levels required by SDI systems. In addition, there are currently no concerted efforts to
ensure that existing advanced methods for testing software are used within the SDI pro-
gram.

This paper lays the groundwork for a technical initiative that will develop and
deploy software testing technology needed to ensure the development of reliable and cost-
effective software for SDI. Three objectives for this initiative have been identified:

a. To ensure that all element program offices have consistent approaches to test-
ing SDI software.

b. To experiment with new and improved testing techniques and to facilitate
their transition into SDI standard practice.

c. To strengthen the scientific basis for software testing methods, tools, and
metrics related to the SDI software testing domain.

A specific approach has been developed for achieving each of these objectives. These
approaches involve technology transition projects, software testing experiments, and
applied research projects.

vii

Transition Projects

9
The first approach involves moving impt wed testing technology intu Co:'mrnrn1

SDI practice. SDI systems will be developed by many different contractot's and multipic
Service agents. It is important that SDIO ensure all software is developed using, con-
sistent, effective testing techniques. The following four recommendations arc intended to
improve current SDI software testing practice. 9

SDIO should ensure that appropriate testing clauses are placed in all element Requests
for Proposals (RFPs) and contracts.

The Department of Defense (DoD) software development standard, DoI)-
STD-2167A, does not provide sufficient specifications for testing SDI software. Although
the standard describes a series of test-related documents that should be produced, it does
not suggest or mandate methods for early detection and prevention of defects during the
software development process. SDIO should develop a common set of RFP and contract
clauses that describe mandatory contractor defect detection and prevention methods. 9
This paper provides a sample set of RFP and contract clauses, as well as an explanation
of, and rationale for, the clauses.

One of the most effective methods for detecting defects during software develop-
ment is called formal inspections. Formal inspections involve a small group of partici-
pants who follow a set of pro.edures for reviewing a work product (e.g., a set of require-
ments, designs, or code). The purpose of the review is to identify as many defects as pos-
sible. Inspections often find up to 80% of code defects during development, and, when
properly applied, can reduce overall system development costs. The use of formal
inspections can also play an important role in achieving high software reliability. The
contractor that developed the National Aeronautics and Space Administration (NASA)
Space Shuttle software attributes much of that systems high software reliability to the use
of formal inspections.

S
SDIO should advocate the use of formal inspections for all Global Protection

Against Limited Strikes (GPALS) software. At this time, however, element program
offices are not currently planning to use this advanced defect detection method. Develop-
ing RFP and contract clauses that describe the requirements for formal inspection will
assist element program offices in establishing this method for GPALS.

viii

SDIO should query element program offices to determine the potential for the use of

defect prevention methods.

Defect prevention methods may represent a key driver in reducing software life-
cycle costs and improving system reliability. Implementation of defect prevention pro-
grams is a task best suited to element program offices and their contractors. However,
SDIO should provide element program offices and their contractors with information on
the potential costs and benefits of defect prevention programs.

Error cause analysis is a promising defect prevention method that should be con-
sidered for use by SDIO. Error cause analysis requires examination of defects to identify
their root causes. Preventive measures are then developed to reduce the likelihood of

recurrence for that type of defect. SDIO should also review existing commercial educa-
tional programs for error -ause analysis and, if appropriate, suggest that element pro-
gram offices offer this training to their contractors.

SDIO should conduct an element program office workshop to promote the application
of advanced testing tools and methods.

SDIO is evolving from a research program to a deployment program. With this
evolution, a need exists for regular communication among element program managers
and SDIO on the activities of software testing. However, element program offices are

currently placing little emphasis on the processes and technology for testing SDI element
software. A workshop would provide a useful forum to discuss element program office
test plans, R.FP and contract clauses, and so forth.

SDIO should establish and actively participate in a software testing subcommittee within

the Computer Resources Working Group (CRWG).

The CRWG provides a regular forum for discussing a wide variety of SDI com-
puter and software-related topics. A software testing subcommittee should function as an
advisory group for element software testing computer and software-related topics. A
software testing subcommittee should function as an advisory group for element software
testing activities. Members of this subcommittee should have direct responsibilities for
element testing activities. Suggested activities for this group include the review of ele-
ment software testing plans and results of testing activities, discussion of available
software testing tools, and discussion on lessons learned from application of testing tech-
nologies.

ix

I ll III I I II iiI II tI

Evaluation Experiments

The second initiative approach involves experimenting with promising new testing
techniques that can add significantly to the trustworthiness, reliability, and cost-effective-
ness of SDI software. Many techniques have been convincingly demonstrated in research
environments but need improvement and refinement before they can be broadly applied.
These techniques may offer significant benefits to the SDI software development corn- 0
munity, and it is important that SDIO investigate and experiment with them. This paper
suggests that SDIO establish a series of technology evaluation experiments that are
intended to:

a. Identify from the collection of available software testing techniques those that 9
most reliably and cost-effectively detect the critical defects.

b. Bridge the gap between research and routine practice, and accelerate the

transition of useful testing techniques.

c. Absorb the costs and mitigate the risks of applying new, unproven testing tech-

niques.

d. Expedite feedback to researchers and technology developers on necessary

improvements and refinements. 0
This paper provides the following recommendations for establishing a software

testing experiment program:

SDIO should annually budget several software testing experiments to identify promising
new testing techniques. 9

Historically, SDIO has not provided funds for software testing experimentation.
In fiscal year 1992, funds were allocated for an initial National Test Facility experiment
with ANNA, a tool that can aid in detecting Ada coding defects. Such efforts should be
encouraged, and it is hoped that additional experimentation will occur. However, the
scope of expenimentation must be broadened and expanded.

SDIO should solicit specific testing experiment proposals from development
organizations (e.g., Army Strategic Defense Command, Air Force Space Systems Divi-
sion) that play key roles in SDI software development. The proposals need significant
input from the contractors, so the solicitations need to filter down to them. SDIO should
also coordinate with Service research and development agencies, such as the Naval
Research Laboratory and Rome Laboratory, to identify promising avenues of experimen-
tation.

x

0!

SDIO should provide recognition for innovations in software testing that evolve from

these experiments.

Achieving the necessary levels of assured software performance and reliability

will require identifying and applying new solutions to software testing problems. One of
the fastest ways to advance the current state of testing practice is to reward innovative

application of new, but unproven, tools and techniques. Software testing activities are

sometimes viewed as counter-productive by development teams. As software develop-

ment deadlines approach, improved testing can mean that more corrections and rework

are required. Program offices, however, must take a broader view and recognize that
improved testing leads to improved products. Rewards for innovation in testing may

include letters of commendation, presentations to the SDI community, and notice in inter-

nal publications.

SDIO should plan to incorporate positive experimental results in technology transition

activities.

The goal of these experiments is to identify technology that can improve current
software testing capabilities. As positive experiment results appear, SDIO should ensure

that the results are communicated to the SDI software development community. Avenues
for this communication include presentations at CRWG meetings, updates to established

software testing standards, and revisions to RFP and contract Statement of Work (SOW)

requirements for software testing practices.

Research Projects

The third initiative approach involves solving several fundamental problems of
testing large-scale, concurrent, distributed, real-time, and fault-tolerant software sys-

tems. Current methods and techniques for testing such systems may not provide the level
of assurance of correct operation, safety, and reliability necessary for SDI software.
Without solutions to these problems, SDI software is likely to contain latent defects that

could compromise the success of SDI's mission. This paper provides the following
recommendations for establishing a software testing research program.

SDIO should establish and fund a long-term research program to improve testing capa-

bilities for large-scale, concurrent, distributed, real-time, and fault-tolerant software

systems.

A sustained, long-term research program would likely need on the order of $1
million per year for five years. This amount is likely to produce useful results within the

xi

available time frame. Given the current shortage of active testing research investiga-
tions, it was judged that much more than this amount could not be applied productively

toward SDI's needs. To revitalize an active software testing research community it is 0
important that this program is recognized as a sustained, multi-year effort. Stop-and-
start funding will defeat program objectives. Also spreading the money thinly over too
many intermediate funding agencies could dilute the program's impact. By taking a
leadership position in establishing this program, SDIO can expect other research funding
agencies to cooperate and perhaps even contribute additional resources of their own to
extend the program.

Once the research program is initiated, SDIO should closely monitor the progress and
effectiveness of research projects. Methods for advanced experimentation and evalua-
tion of research results should be developed.

Annual reviews of ongoing research projects should be conducted. Renewed
funding should be contingent on demonstrated progress and on the expectation of useful
results. In addition, annual workshops should be held where both research ideas and
practical problems of testing SDI software can be presented and discussed. This mix of
theory and practice should provide two-way communication between researcher and
practitioner, accelerating the transition of new research results into practice and feeding
practical utility and relevance information back into the research process.

0

0

S. , • .il l Ix Ii

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1 Purpose 1
1.2 Organization
1.3 Background .

1.3.1 GPALS Segments 2
1.3.2 Overview of the Software Testing Initiative 3

1.3.2.1 Objectives 3
1.3.2.2 Beneficiaries 4
1.3.2.3 Cost and Schedule 5

2. KEY SDI SOFTWARE TESTING ISSUES 7
". Current State of Software Testing 7

2.2 Reliable and Safe Operation 9
2.3 Problematic Software Characteristics 10
2.4 Meeting Budgets and Schedules 12

3. TECHNOLOGY TRANSITION PROJECTS 15
3.1 Testing Guidebook 15

3.1.1 Typical RFP Software Testing Requirements 15
3.1.2 Software Testing RFP and Contract Clauses 16

3.2 Technology Awareness 17
3.3 Defect Prevention 18
3.4 SDI Software Testing Workshop 20
3.5 Recommendations 21

4. TECHNOLOGY EVALUATION EXPERIMENTS 23
4.1 General Approach 24
4.2 Experiment Scenarios 24

4.2.1 Live Project Scenario 25
4.2.2 Parallel Development Project Scenario 26
4.2.3 Separate Evaluation Project Scenario 26

4.3 Participants 27
4.4 Technology Selection Criteria 27
4.5 Example Technologies 28

4.5.1 ANNA 28
4.5.2 Cleanroom 30
4.5.3 Improved Structural Coverage 31

-Xiii-

4.5.4 Reproducible and lh errnii• -ut iu .

4.5.5 Sofrrarc h ultu lrcc Aiialvs,

4.6 Recommendatioris

5. RESEARCH PROJ[CVTS

5.1 Anticipated Benefits

5.2 Evaluation C.riteria .

5.3 Participants . 49. 0

5.4 Recornm rendatiions 4ý,

APPENDIX A.- SU(;G6STHI) RFP AND ONN RAC(C'I AUSt S ..

A.1 Inspections 43

P .2 Structural Test (CovCragc 45

A.3 Regression lesting 47

A.4 Testable Requirements 47

A.5 Automated Testing ok.l.s 4. .

A.6 Error Cause Analysis 4.

A.7 Reliability Analysis 49

A.8 Test Effectiveness and Progress 49

REFERENCESt................ 51

ACRONYMS .. 5

9

0i

0

~xiv-

-XW-

LIST OF FIGURES

Figure 2-1. Proportional Costs of Software Dewvlopmcnt Activics

Figure 2-2. Monitoriaig Defect Detection Rate 14

Figure 2-3. Monitoring Test Progress 14

,,,, .,. ,,,,., , , n I Il m m m i

LIST OF TABLES

Table 3-1. IBM FSD Houston Software Quality Improvement 19

Table 4-1. Ranked Technology Selection Criteria for ANNA 29

Table 4-2. Ranked Technology Selection Criteria for Cleanroom 31

Table 4-3. Ranked Technology Selection Criteria for Improved Structural Cover-

age 32

Table 4-4. Ranked Technology Selection Criteria for Reproducible and Determinis-

tic Execution 34

Table 4-5. Ranked Technology Selection Criteria for Software Fault-Tree

Analysis 35

xvii

1. INTRODUCTION

1.1 Purpose

With the Missile Defense Act of 1991, Congress appropriated funds for the

development and deployment of ballistic missile defense systems capable of protecting

the United States, as well as US forces, friends, and allies overseas [MDA 19911.

Several of the experimental weapon and sensor programs funded by the Strategic

Defense Initiative Organization (SDIO) will make the transition to full-scale develop-

meat in the next few years. All of these systems will rely upon software to function prop-

erly.

Software testing will play a critical role in developing reliable and cost-effective

Strategic Defense Initiative (SDI) software. However, previous studies by the Institute

for Defense Analyses (IDA) have concluded that conventional testing methods sufficient

for small-scale sequential software may not be adequate for testing software for strategic

defense systems [Youngblut 1989, Brykczynski 1990). Moreover, there is no concerted

effort to ensure that advanced methods for testing software are used within the SDI pro-

gram.

This paper lays the groundwork for a technical initiative that will develop and

deploy software testing technology and practices needed to ensure reliable and safe

operation of computer-controlled strategic defense systems. The paper provides SDIO

with a set of recommendations and supporting analysis to begin a comprehensive

software testing initiative in fiscal year 1993.

1.2 Organization

Section 2 of this paper describes key SDI software testing issues, such as the

current state of software testing practice, problematic software characteristics, and the

ability to meet system development budgets and schedules. A brief overview of the

software testing initiative, including the overall objectives, beneficiaries, cost and

schedule, is presented in Section 3. Sections 4, 5, and 6 provide descriptions of technol-

ogy transition projects, technology evaluation experiments, and research projects that

-• -• , ii a i i1

make up the initiative. Specific recommendations for implementing these projects and
experiments are included within each of these sections. Appendix A provides Request
for Proposal (RFP) and contract clauses suggested for SDI element program offices, as 0
well as rationale for these clauses. These clauses provide a mechanism to encourage
improved software testing practices.

1.3 Background 0

The concept of an SDIO software testing initiative emerged in the summer of
1990. During that time, several briefings were made to SDIO officials on the anticipated
difficulty of testing Phase I Strategic Defense System (SDS) software. It was recognized
by SDIO that an effort to develop improved testing capabilities was necessary, and IDA 0
was tasked to develop a description of such an effort.

In late 1990, IDA published a paper for SDIO which concluded that conventional
testing methods sufficient for small-scale sequential software would not be adequate for
testing SDS software lBrykczynski 19901. This paper also provided an initial, high-level 0
description of an SDIO software testing initiative and identified three classes of projects
that should form the initiative:

a. Technology transition projects

b. Technology evaluation experiments 0

c. Research projects

Preliminary estimates of cost, schedule, and methods for implementation were included
in the paper. 0

In 1991, SDIO re-focused the SDI program to provide ballistic missile defense
from accidental launches and limited strikes. The new SDI architecture, Global Protec-
tion Against Limited Strikes (GPALS), preserved many of the software testing challenges
found in the Phase I SDS architecture. Based on the initial 1990 paper, IDA began to
refine the description of the components of the initiative and to develop specific recom-
mendations for implementing the effort. This paper presents the results of that effort.

1.3.1 GPALS Segments 0

SDIO is currently planning the development and deployment of the GPALS sys-
tem. GPALS will provide protection from an attack of up to 200 ballistic missiles on the
United States as well as on US forces, friends, and allies overseas. GPALS is composed

0

2
05

of three interoperable segments:

a. Theater Missile Defense (TMD) will provide transportable systems for

theater ballistic missile protection. TMD elements include transportable

ground-based radars and interceptors, and space-based sens-'rs for launch

detection and missile tracking.

b. National Missile Defense (NMD) will provide protection to the US from

accidental or limited ballistic missile attacks. NMD elements include fixed

ground-based radars and interceptors, as well as space-based sensors.

c. Global Missile Defense (GMD) is focused on developing space-based inter-

ceptors to assist TMD and NMD. The primary system being examined is the

Brilliant Pebbles (BP) interceptor that will provide boost and midcourse

detection and interception.

At the present time, specific system architectures for each segment have not yet

been developed. Previously proposed SDI elements such as Ground Based Radar (GBR),

Ground Based Interceptor (GBI), and Brilliant Eyes (BE) will be included in the segment

architectures. Formal GPALS acquisition schedules have yet to be determined. Follow-

ing the guidance of the Missile Defense Act of 1991 [MDA 19911, SDIO is planning to

develop and deploy an early NMD capability by 1996. Establishing segment architectures
and developing acquisition schedules will be a high priority in fiscal year 1992.

1.3.2 Overview of the Software Testing Initiative

SDI systems will critically depend on reliable software. Experience demon-
strates, however, that the current state of software testing technology and practice poses a

significant risk in building a reliable and affordable SDI system. Therefore, the overall
goal of the software testing iaitiative is to provide the technology to substantially enhance
the reliability, safety, and affordability of software developed to operate and control SDI

element systems.

This section of the paper provides a brief overview of the objectives, benefi-
ciaries, and cost and schedule of the testing initiative.

1.3.2.1 Objectives

To achieve the goals stated above, three specific objectives have been identified
for the testing initiative. The first is to ensure that all element program offices have con-

sistent approaches to testing GPALS software. Testing practices vary widely across the

3

0 oi I

9

software industry. This variability contributes directly to increased program risk. Stan-
dardization of approaches offers several benefits. First, it can reduce the existing vana-
bility in testing practices that increases program risk. More specifically, standardization 9
can ensure consistent application of testing techniques that are known to be cost effec-
tive. It can provide a common basis for analyzing reliability data across system elements.
It can also ensure use of a minimum set of product and process measures that support
early identification of potential problems. These measures can themselves be used to
identify isolated good practices whose use should be encouraged across the program, thus
helping to refine the set of standardized practices. Finally, standardization can reduce
testing costs by allowing wide usage of a common set of testing tools. Included within this
aspect of the initiative is the building or acquiring experience with robust production qual-
ity tools, providing training in proven testing technology, and promoting software defect 0
prevention efforts within the SDI program.

The second objective of the initiative is to experiment with new and improved
testing techniques and to facilitate their transition into GPALS standard practice. The
primary approach used to accomplish this objective will be to foster experimentation with 9
promising or emerging testing technology that has not yet been demonstrated as cost
effective on large systems. Experiments may involve construction of prototype tools and
the application of new, unproven techniques and tools in actual SDI development pro-

jects.

The third objective of the initiative is to strengthen the scientific basis for
software testing methods, tools, and metrics related to the SDI software testing domain.
For example, a problem facing software reliability and safety assurance is that even
though all known software defects may be corrected before deployment, this does not
imply that the software will operate perfectly. It could simply reflect, for example, that
the tests were not adequate to expose hidden defects. Measuring the effectiveness of
software testing and the potential added value of additional testing is an open research
area. In addition, critical parts of SDI software will exhibit characteristics such as large-
scale, real-time, concurrent, and distributed processing, yet the technology currently 0
available to test such software is rudimentary.

1.3.2.2 Beneficiaries

Although the recommendations in this paper are being developed for SDIO, the
testing initiative is primarily aimed at benefiting element contractors and their program
offices. It is the element contractors who must apply appropriate testing processes during
the development of element software, and it is the element program offices who bear the

4

4

9

responsibility for ensuring that element software is safe, reliable, and affordable.

The testing initiative will influence element program offices in near, medium, and
long-range timeframes. Initiative products, such as RIT and contract clauses specifying
advanced testing practices, may have an immediate impact on how element program
offices contract for software. Other aspects of the initiative will seek to improve program
office awareness of software testing difficulties and solutions.

As described in Section 1.3.1, GPALS is composed of three segments. At this
time it seems likely that an operational NMD segment will be deployed in the 1996
timeframe. For this system, several ground- and space-based elements will be developed
for integration into new and existing command and control systems. Although formal
software sizing estimates for this NMD system have not yet been produced, it is likely that
NMID will require development of 8-10 million lines of software. As described in Section
2, testing this software will be an extremely difficult task. Initiative experiments that
evaluate near-term improvements in testing technology will likely have a significant
impact on testing NMD segment software. Experiments that evaluate longer-term testing
research results will further improve methods for testing GMD segment software.

Research focused on testing real-time, concurrent, distributed, and fault-tolerant
software may take several years before useful results can be applied in the field. A
number of SDI elements and system enhancements, however, are likely to be in develop-
ment well into the next decade. Research results, therefore, will be available to improve
the testing of GMD segment software.

1.3.2.3 Cost and Schedule

The initiative should be planned initially as a five-year, $20 million effort. The
five-year period provides a reasonable amount of time to move existing technology into
standard practice. In addition, high-payoff research efforts should be able to return
experimental results within this period. The success of the evaluation experiments will
determine if individual element program offices and contractors continue them beyond
the five-year initiative. The $20 million cost reflects the likely amount of useful work that
could be accomplished within the five-year period.

This paper lays out the basic objectives for the initiative; defines criteria for
acceptable experimental evaluation projects; identifies several promising, high-priority
projects that should be undertaken; and proposes an infrastructure for initiating projects.
The overall cost and schedule estimates are meant as guidelines. Detailed estimates for
project cost and duration will depend on which projects are selected, who performs them,

i a a ii I ! 5

and how they are implemented. Specific annual initiative budgets will have to be

developed as a part of the SDIO fiscal year budget process.

60

0

0

0

0

0

0

0

6

2. KEY SDI SOFTWARE TESTING ISSUES

The ability to develop SDI software with sufficient confidence that it will perform

correctly has been raised as a key technical issue numerous times in the history of the SDI

[Fletcher 1983, Cohen 1985, Parnas 1985]. Testing is the principal approach available for

assuring correct software operation and, therefore, testing will play a critical role in

building confidence in SDII software. Three aspects of software testing are of importance
to the SDI program:

a. Assuring reliable and safe operation of SDI software.

b. Effectively testing software (e.g., real-time, distributed, concurrent) that
imposes particular testing problems.

c. Achieving required levels of assurance within cost and schedule constraints.

These points are expanded upon below, following an account of the current state of
software testing art and practice.

2.1 Current State of Software Testing

Software testing involves the application of tools, techniques, and methodologies

to determine the presence of defects. 2 These defects exist not only in code, but also in

requirements, specifications, designs, documentation, and other products of the software

development process. To date, the majority of software testing research and develop-

ment has focused on relatively simple, small-scale, sequential software. Techniques that

are effective for small pieces of software, however, often do not scale up well for large
systems. Ballistic missile defense systems require software that exhibits real-time perfor-

mance, fault tolerance, and distributed operation-all of which severely complicate the

testing process. Technology to adequately test such software has not kept pace with the

demands for these capabilities and remains largely a research topic.

1. This paper will use the term SDI when referring to general architecture concepts associated with
strategic defense systems. The term GPALS will be used to refer to the specific architecture being
examined by SD1O.

2. A defect is an error in software code, design, or requirements that might cause faults. A fault is a
manifestation of a defect. A failure is a serious fault that cannot be recovered from and prevents a
system from achieving its mission.

7

To complicate matters further, testing technology that is available is seldom

applied. This was found in an effort in 1981 to document Department of Defense (DoD)
software testing practices [DeMillo 19871. This study found a fifteen-year gap between

the state of the art in software testing and the state of DoD practice. There is no evi-
dence to indicate that this gap has closed in recent years.

Testing is typically an ad hoc, labor-intensive effort only poorly supported by sys-
tematic procedures and automated tools. As shown in Figure 2-1, data collected during

the development of a number of early, large software systems (e.g., Semiautomated

Ground Environment (SAGE), Naval Tactical Data System (NTDS), GEMINI,
SATURN V, and IBM OS/360) reveal that software unit, integration, and system testing
alone represent approximately one half of the software development effort [Boehm 1970,

Alberts 19761. In the National Aeronautics and Space Administration (NASA) Apollo

system, 80% of the software development effort was spent on testing [Dunn 1984].
Although -oftware development methods and practices have generally improved over
time, there is no evidence that the proportion of effort required for testing has been signi-

ficantly reduced.

0

Testing Unitd
50% Inntegraion

Figure 2-1. Proportional Costs of Software Development Activities

The classic questions that remain unanswered by current software testing technol-
ogy are: "How much testing is needed?" and "Which techniques should be applied?"

Testing budgets and schedules are typically based on experience gained in building similar
systems. All too often, testing simply stops when the budget or schedule dictates.

8

0

2.2 Reliable and Safe Operation

Testing will be the primary means by which confidence in the reliable and safe
operation of SDI software is gained during its development and probably throughout its
deployed lifetime. Operational testing ordinarily represents only a small fraction of
software testing. Although operational testing generally exercises the system's capabili-
ties, it typically involves only a small portion of the software and reveals little about its
reliability. This is because it is virtually impossible to control the operational testing
environment to exercise the software more thoroughly. Exercising smaller software com-
ponents in relative isolation enables much more rigorous testing. In addition, operational
testing is very expensive. Defects discovered early in the development are much less
expensive to correct [Boehm 1981, p. 40]. Therefore, software testing must be performed
throughout the development process. Although latent software defects may still be
exposed in operational tests, earlier testing efforts are generally much more effective and
much less expensive.

Unfortunately, testing cannot guarantee the absence of all defects in software
[Myers 1979, pp. 9-11; Boehm 1970, p. 25]. It is generally acknowledged that large, com-
plex software systems will contain defects. The overall SDI design, therefore, must
include consideration of the impact that software defects can have on reliable and safe
system operation. The software system architecture and subsystem designs must also
consider the potential impact of defects in lower-level software components. Testing can
be used to guide the application of software fault-tolerance techniques to recover func-
tionality and performance in the event of hardware and software faults, and to ensure
continued safe operation.

Another problem arises from the difficulty of determining the reliability of
software. Conventional measures of reliability, such as mean-time-to-failure, are based
on statistical models originally developed for hardware systems. There are fundamental
differences, however, between software and hardware failures. Software, for example,
does not wear out or fail randomly. If software contains defects and fails to produce
correct results, then given the exact same conditions, it will produce exactly the same
incorrect results again and again. Current measures of software reliability actually reflect
the probability of external conditions arising that cause software defects to produce
incorrect results. They are not direct measures of defects and the probability of their pro-
ducing incorrect results. That is, a system that has operated flawlessly for years can sud-
denly begin to fail when the distribution or timing of inputs change. Hence, the reliability
of software that has not been modified in any way appears to change.

9

Statistical techniques have also been applied to estimate the number of defects

remaining in software and the potential impact that software faults might have on overall

system operation. For example, there are techniques for estimating the number ot f

defects remaining in a program based on the history of defects already found. However,

these techniques need considerable refinement to increase their accuracy.

Meanwhile, there is reason for hope. A number of testing techniques can con-

clusively demonstrate the absence of particular, limited types of software defects. For
example, interface datatype mismatches have been eliminated by strong type checking in

high-level programming languages such as Ada. These techniques provide for a high

degree of confidence in certain aspects of the software and more such techniques are

needed.

2.3 Problematic Software Characteristics

Conventional testing methods sufficient for simple, sequential software are not

adequate for the SDI. Portions of the SDI software will have to be highly real time, con- S
current, distributed, and fault tolerant. Each of these characteristics imposes particular
testing problems, as noted in the following paragraphs.

a. Large-scale software consists of a million or more lines of source code. The

complexity of such software systems, the diversity of possible inputs that musz 0
be handled, and the potential conditions under which faults might arise

increase dramatically with the size of a system. The adequacy of testing, in
terms of the number of possible input values and program states that can actu-

ally be checked, therefore, decreases significantly as system size increases. S
Current automated testing tools extend testing capabilities beyond what can
be achieved manually, but are still not adequate for very large systems.

b. Real-time software must execute within strict time requirements. In ieal-time

systems, a missed deadline is considered a fault even if computed values are
correct. Consequently, testing must verify timing behavior as well as func-

tionality. Time-critical computations commonly overlap and compete for pro-
cessing resources. The timing of one function, therefore, depends on the

resources required and the time consumed by all other functions that can
inter upt its execution. Current analytical techniques, in practice, require 0

making simplifying assumptions that can lead either to under-equipped sys-
tems that unexpectedly miss deadlines or to over-equipped systems that never
fully use all the resources available. Testing is complicated by the time-critical

events that have to be orchestrate to exercise the software under numerous

10

possible conditions. In addition, "invasive" testing techniques that are com-

monly used to check functionality (e.g., executable assertions anw probes that

collect test coverage data during execution) often distort performance enough

to introduce faults and to mask the effects of existing defects.

c. Concurrent software consists of multiple tasks or "threads" that execute in

parallel on multiple processors or asynchronously on a single processor.

Cooperation between tasks is managed by operations that allow two tasks to
synchronize and exchange information. Defects in concurrent software

include all those that can appear in single-thread sequential programs plus

defects in synchronization. The difficulty of testing concurrent software arises

from the nondeterminism inherent in synchronization events, which means
that two executions of the same software with the same inputs may not pro-

duce the same results. All possible synchronization sequences must be

analyzed and tested, which is further complicated by the problem of determin-

ing path feasibility. Special tools and techniques are required to repeat partic-

ular synchronization sequences to identify causes of faults and to check modif-
ications made to remove defects.

d. Distributed software is made up of cooperating processes that execute on mul-

tiple processors separated physically and connected via communications

channels. These processes can be modeled using the same techniques used

for concurrent software. The main difference is that synchronization requires
communication between processors, which typically introduces additional

latency and uncertainty into the timing of synchronizations. This uncontroll-

able variability increases the difficulty of systematically repeating faulty
behavior. External communication channels also represent additional points

of potential failure that concurrent tasks on single processors and closely cou-

pled multiprocessors typically do not need to address.

e. Fault-tolerant software is designed to ensure that system failures are con-

trolled. Tolerance of hardware failures is usually achieved by the provision of

redundant system components. Tolerance of software faults tends to focus on

the use of multiple, independently-developed versions of the software (N-ver-

sion programming) and fault detection and recovery mechanisms (e.g.,
recovery blocks). Testing such software requires introducing hardware and

software faults in order to evaluate the response. Characterizing potential

defects realistically, however, is difficult and may give rise to questions about

the validity of such tests.

11

"Ibe only methods in 'urrent pfr..Ct1CC Zu t10 ' g LeC.e tSvpC) C 2 C I Y:) ,

hoc and cannot be relied upon to Icztd up to the t.c an~d .dmpicx•iXi +r•:cd Il \!)i

software. The problems are well recogntucd, however, and the tch..lg to I ,

them is being lnvestugwed. For example, In the czase ! rcpr+duclt'l cxe ,, ,f i,,i-

current ,'oftware, basic support technology 1s under dcve',pznnt .tb3i piov-d. i.

framework in which some cxts'ing testing tc•hniqucs for scqucriu s,.ts: 1,c hC

applied.

2.4 Meeting Budgets and Schedules

Three avenues are available for increasing the cffcctvcness and p:oductnvi+ 1!

software testing for SDI sy.,tems. A significant tiop 1, frward can kc achiccd b).w

emphasizing the use of testing tools foi use in both soft-,are devclopmcrn and posit

deployment support. There are a number of advanced prototypTt tow•s that arc readv to

be transformed into production-quality tools, or to te taken from a spccialhzcd develop-

ment environment to one applicable for SDI systems. 'Thes, tools ',.d +c untcgrtcd

into the nlanned SDIO Software Engineering Environme,' At the ver' least, a

set of basic testing utilities such as test drivers, test data generators, co cerage analyzers.

test management tools, and regression testing tools should b- ý; --

A second avenue for increasing the software testing effectiseness and produc..

tivity involves the cost-effectiveness of available testing techniques. The effcctivcncss of

various techniques ranges from detecting all instances of particular, narrow but well-

defined classes of defects (e.g., 100% of interface datatype defects). to detecting smaller

percentages on wider ranges of defects (e.g., 60 to 90% of all types of defects via inspec-

tions). Although these defect detection rates seem promising, the techniques that yield 0
these rates are not often used. The cost of implementing these techniques is often cited as

the reason they are not used. A thorongh understanding of the cost effectiveness of avail-

able techniques, including areas where techniques overlap (i.e., which techniques find the

same types of defects), is needed to adequately plan and control testing activities for SDI

software.

Theoretical approaches to evaluating the effectiveness of particular testing tech-

niques are being pursued, but this research may not yield practical results in the next five

years. In the meantime, empirical data coll-cted from trial use of techniques on near-

term SDI software development efforts could go a long way to filling this gap. Such data

could provide cost-effectiveness information for a number of techniques that can then be

used in selecting techniques to apply.

12

Finally, the use of a limited set of product and process measures could provide

element contractors with better insight into testing activities. This insight could reveal

potential schedule or cost slippages while there is still time to take appropriate action.

Defect detection rate is one fundamental measure. Here the basic mapping of the number

of defects found per thousr ý lines of code (KLOC) against time provides an indirect

indication of both the growth in software quality and of test progress. This measure can

be extended in several ways. For example, the defect detection rate can be contrasted
with the correction rate to indicate if debugging is becoming an obstacle to test progress.

When an estimate of the total defects to be found is also included, the variance between

estimated number of defects and actual corrected defects provides an estimate of pro-

gress towards completion. A sample graph is shown in Figure 2-2. Additional measures
can be used to focus attention on known problem areas. It is widely agreed, for example,

that modified software can be several times more defect prone than new code [Humphrey

1989, pp. 383, 439). Consequently, in a test effort where frequent changes are required to
accommodate evolving requirements, a manager might request data on the relative defect
detection rate versus the rate of modification.

Tracking the test progress starts with knowledge of what is to be done and the

expected results. In other words, a test plan that specifies the needed testing is a prere-
quisite for objectively assessing how much testing remains to be performed. Depending on

the information provided in the test plan, there are a variety of measures that can be
used. When the test plan specifies a required level of structural coverage as a criteria for

stopping testing, for example, the number of modules that have successfully reached the

required coverage level provides an indicator of early testing progress. When specific test
cases are defined, the total tests planned, tests ready to run, tests run, and tests run suc-

cessfully can be contrasted, as illustrated in Figure 2-3.

13

Detects
found

Total * Predicted!"
Defectsdecto
Found #il eeto

Defects
,5 corrected

T~ime (weeks)

Figure 2-2. Monitoring Defect Detection Rate

iS

!0

of tests
Tests ready

to run

Tests runed
___successfully

Tioe

Figure 2-3. Monitoring Test Progressat

14

1 Tota *,es0

3. TECHNOLOGY TRANSITION PROJECTS

The goal of technology transition efforts within the testing initiative is to improve

current and near-term SDI software testing practices by promoting consistent use of effec-

tive tools and methods. Four primary approaches will be used to improve SDI software

testing practices:

a. Developing a guidebook that provides SDIO and element contracting agencies

with recommended RFP and contract clauses for applying software testing

technology.

b. Increasing education and training in desirable testing technology.

c. Promoting software defect prevention efforts within the SDI element pro-
grams.

d. Establishing regular forums, such as workshops and Computer Resources

Working Group (CRWG) subcommittee meetings, to discuss SDI software
testing issues.

3.1 Testing Guidebook

It is the responsibility of SDI element program managers to ensure that reliable

element software is cost effectively produced. SDIO should assist element program
managers in identifying advanced testing practices that wil contribute to reliable, cost-
effective software. One method for effecting the consistent application of advanced
practices is to require them as part of element RFPs and contracts. This section of the

paper discussL.s a guidebook that recommends RFP and contract clauses for required
contractor testing practices and provides rationale for the practices.

3.1.1 Typical RFP Software Testing Requirements

DoD-STD-2167A and DoD-STD-2168 are the primary software development
related requirements found in DoD RFPs and contracts. DoD-STD-2168 identifies con-
tractor requirements for developing a software quality management program, but has not

had a significant impact on actual software development lifecycle activities. DoD-
STD-2167A, on the other hand, plays a key role in the software development process.

15

DoD-STD-2167A identifies a series of reviews that should take place during
software development and suggests a variety of software documentation that should be
produced. The standard describes several testing-related documents. The Software Test
Plan (STP) describes the contractor's plans for conducting required formal qualification
testing (FQT) activities. FQT is the process that allows the contracting agency, or Pro-
gram Office, to determine whether the software complies with its allocated requirements.
The Software Test Description (STD) identifies and describes the specific formal qualifi-
cation test cases to be applied against each Computer Software Configuration Item
(CSCI). The results of the tests are reported in a Software Test Report (STR).

The testing philosophy of DoD-STD-2167A assumes that the contractor knows
how to produce defect-free software and that the primary responsibility of the contracting
agency is to witness this fact through a series of tests designed to show that the system
meets its functional requirements. One problem with this philosophy is that software
development is a defect-prone process. Effective use of methods for detecting and
preventing defects during software development will result in fewer latent defects upon
delivery. Unfortunately, DoD-STD-2167A provides little guidance to program offices and 9
contractors on defect detection and prevention methods. Such methods are rarely
required by contracting agencies. As experience is gained with effective methods for
defect detection and prevention, contracting agencies should require their use.

The philosophy also assumes that testing is an easily managed, low-priority 0
activity. In fact, testing can be the single most significant cost driver for the development
of high-assurance software systems. Consequently, contracting agencies should require
proper planning and management of testing activities.

3.1.2 Software Testing RFP and Contract Clauses

Appendix A provides a sample set of suggested RFP and contract clauses that a
contracting agency can use to improve visibility into a contractor's software testing pro-
cess. These clauses place several requirements upon the contractor that are likely to con-
tribute to increased reliability and cost effectiveness of the software. The clauses cover
the following areas: formal design and code inspections, structural code coverage,
regression testing, testable requirements, automated testing tools, error cause analysis,
reliability analysis, and test effectiveness and progress measurement.

The clauses in Appendix A have not been reviewed by contracting offices and
those involved with software testing in the SDIO community. They need to be refined and
investigation into additional RFP and contract clauses is recommended. For example, in
some cases requiring 100% branch coverage may be too stringent. The effort necessary

16

• i m i a i I

to develop the final 10-15% of test cases may be more effectively spent in other areas.

Development of improved RFP and contract clauses should be a high priority in the

software testing initiative.

Program and contracting offices also need to know why the practices represented

in Appendix A should be advocated. Thus, the appendix also provides an explanation

of, and rationale for, each clause. Together, the RFP and contract clauses and the

rationale form a software testing guidebook that SDIO can use to improve current

software testing practices. Active involvement by the contracting agency and the element

program office is necessary in order to ensure that the contractor's software testing pro-

cess is effective.

3.2 Technology Awareness

A key issue for SDIO is "How should advanced testing practices be effectively

applied to GPALS software developments?" A similar question is "How should SDIO

reduce portions of the technological lag in DoD software testing practice to less than
three years?" SDIO cannot afford to wait until appropriate methods are routinely

applied by DoD contractors. Thus, SDIO will have to actively foster the transition of
advanced testing practices into the SDI contractor community.

It is unlikely that SDI element program offices have sufficient understanding of

the testing methods identified in Appendix A to successfully apply them to element

development. Unfortunately, these methods are not standard operating procedure for

many DoD contractors. Simply placing the clauses found in Appendix A into element
RFPs and contracts will not be sufficient to gain benefits of increased reliability and cost

effectiveness. Getting these methods successfully implemented by SDI contractors will

require efforts by SDIO to raise element program office awareness of the methods. SDIO

and its acquisition agents should push element contractors towards the use of key, high

payoff testing technologies, such as the rigorous use of inspections, use of structural cov-

erage measures, and the use of commercial tools for test creation, application, and
management. This in turn, requires that SDIO and element acquisition officials first

understand the need for, and benefits from, these methods. Thus, an important aspect of
transitioning these methods will be educating acquisition officials on the technical testing

requirements that should be levied on GPALS element contractors. This education

should be in the form of brief notices that:

a. Describe the technology and instances of its previous application.

17

b. Discuss probable benefits and potential pitfalls, ideally with reference to

those encountered in previous use.

c. Indicate what to specify in RFP and contract clauses.

d. Describe the contract agency monitoring necessary to ensure the technology is

being effectively applied.

These notices should be derived from the contract clause rationale described in

Appendix A. However, the notices should be written such that an element program

manager will understand the need for, and benefits from, the technology. These notices

should be distributed to all SDI acquisition officials that are involved in the procurement

of GPALS elements.

3.3 Defect Prevention

Defect prevention is motivated by the high costs of finding and repairing defects.

Typically 35-50% of programmer effort is spent in defect removal for sequential software

[Duan 1984, p. 51, and the difficulties presented by concurrent software will necessitate
significantly more effort for SDI software. Whereas most types of defect prevention

(e.g., prototyping) are only indirectly associated with defects, error cause analysis is a

type of defect prevention that is driven by defect occurrence. It will allow element con-
tractors to take information that is already provided by testing activities and use this

information to guide improvements to their software development process.

Error cause analysis has been credited with substantial successes. In one case,

Hewlett-Packard applied this type of defect prevention in the development of four succes-

sive releases of a software product. Whereas 25% of the total defects detected were

found after the delivery of the first two releases, this figure dropped to 10% for the third
release and zero for the fourth [Humphrey 1989, p. 364]. In another case, error cause

analysis provided a 50% reduction in defects found during development and a 78% reduc-

tion in defects shipped [Humphrey 1989, p. 365]. For developing shuttle flight software,

IBM Federal Systems Division (FSD) Houston combined error cause analysis with

software inspections. The resulting improvement in software quality that they experi-

enced over a two-year period is summarized in Table 3-1 [Myers 1988, p. 93).

Error cause analysis requires the analysis of defects to categorize them and iden-

tify common defect causes. Action teams are established to devise preventive measures

that will avoid recurrences of similar defects, and detection measures that will ensure

these defects are identified earlier in the development process. The resulting action items

may address development methods, technology, procedures, or training. As with

18

Table 3-1. IBM FSD Houston Software Quality Improvement

Industry Shuttle Software Shuttle Software

Defects per KSLOC In 1993 In 1985

Defects per KSLOC Defects per KSLOC

Defects detected 40-85 10 <3
before release

Defects detected 8- 10 2 0.11
after release

software changes, action items are tracked to completion. In this way, error cause
analysis provides a continuing focus for process improvement.

The introduction of error cause analysis into the SDI contractor community will
incur some costs. Element contractors will need to document their development process.
Data on the effectiveness of standard practices should be sought to provide an initial
determination of the major problems areas and to assist in setting quality goals. Although
problem reports are probably already required, the associated defect classification
scheme may need to be revised. (There is a draft Institute for Electrical and Electronics
Engineers (IEEE) standard defect classification scheme [IEEE 19871. However, it is
likely that element programs will need to tailor or adapt this scheme.) More importantly,
process and product measures will be needed to assess the effectiveness of current prac-
tices, as well as the impact of process changes. SDIO should encourage element contrac-
tors to use a common, limited set of metrics. Three key metrics used by IBM FSD Hous-
ton [Kolkhorst 1988, p. 26] are:

a. Product Defect Rate. For each release, this metric measures the number of
defects per thousand lines (excluding comments) of source code (KSLOC).
Defects are documented as Discrepancy Reports (DRs):

Product Defect Rate = Number of valid DRs found post delivery / KSLOC.

b. Process Defect Rate. Computed prior to software delivery, this metric moni-
tors the efficiency of defect detection:

Process Defect Rate = Number of valid DRs found predelivery / KSLOC.

c. Earlj Detection Percentage. Measures the percentage of defects detected
prior to integration testing:

Early Detection Percentage = (Number major inspection defects x 100) /

Number of total defects detected.

19

As with any new technology, error cause analysis and defect prevention skills must be

learned and practiced. In addition to the previously cited applications, these metrics can

be usefully employed in monitoring the success of defect prevention as a whole. 0

Despite its proven effectiveness in a few cases, error cause analysis is not widely

used. SDIO should seek to gather information on the costs and benefits of this technology

that can be provided to element contractors to encourage their contractors to employ this

technology. In particular, this information should demonstrate that the investment

incurred in setting up and conducting a defect prevention program based on error cause
analysis can yield rapid returns [Humphrey 1988, p. 387]. SDIO should also review IBM

FSD Houston's education program for error cause analysis and, if appropriate, recom-

mend this training to element contractors.

3.4 SDI Software Testing Workshop

An SDIO forum dedicated to discussing software testing issues does not currently
exist. Such issues include, for example, lessons learned from testing methods used in past 0
programs, tools and methods that proved useful, and suggestions for RFP and contract
clauses. With SDIO now developing early deployment plans, it is important that the vari-
ous element program offices and SDIO begin to review and share experience with
software testing plans and technology. The formation of a software testing subcommittee
of the CRWG would facilitate this exchange. Prior to the formation of a subcommittee,
though, it would be useful to bring together the likely participants in a preliminary meet-
ing. The purpose of this meeting would be to promote the application of advanced testing
tools and methods. An informal meeting, such as a workshop, is suggested to provide a
forum for technical discussions related to software testing. Suggested topics for the 0
workshop include:

a. Element program office software testing plans

b. Element program office positions on needed software testing technology 0

c. Available software testing methods and tools

d. Experience with metrics related to software testing

e. Software testing clauses for SDI element RFPs and contracts •

The workshop should be divided into two parts. The first part would include only
those within the SDI community (e.g., element program offices, Army Strategic Defense
Command, Air Force Space Systems Division, National Test Facility, SDIO). The
second part would be open to others, such as outside experts to give presentations on

20

topics of interest to the SDI community, such as:

a. Commercial testing tool vendor demonstrations

b. Presentations by best-in-class organizations

c. Tutorials by experts in technology areas

3.5 Recommendations

1. SDIO should ensure that appropriate testing clauses are placed in all element RFPs
and contracts.

The RFP and contract clauses found in Appendix A are examples of how to
address technologies that can significantly improve the reliability and cost effective-
ness of SDI software. Without such clauses, and without program office support for
their application, SDIO will likely find its software-intensive procurements at higher
levels of risk as those found in past DoD software procurements. The clauses in
Appendix A have not been reviewed by SDIO or element program offices. SDIO
should begin this review process as soon as possible, so that the clauses are ready
for inclusion in GPALS RFPs.

Specifying advanced testing practices in an RFP or contract does not
guarantee their proper application. Element program office involvement is critical
to the success of these methods. When software is developed using such practices,
SDIO should ensure that element program offices are monitoring the effectiveness
of these practices and ensuring their appropriate use.

2. SDIO should query element program offices to determine the potential for the use of
defect prevention methods.

Defect prevention methods may represent a key driver in reducing software
life cycle costs and improving system reliability. Implementation of defect preven-
tion programs is a task best suited to element program offices and their contractors.
However, SDIO should provide element program offices and their contractors with
information on the potential costs and benefits of defect prevention programs such
as error cause analysis. SDIO should also review IBM FSD Houston's education
program for error cause analysis and, if appropriate, suggest that element program
offices offer this type of training to their contractors.

3. SDIO should conduct an element program office workshop to promote the applica-
tion of advanced testing tools and methods.

21

SDIO is evolving from a research program to a deployment program. With

this evolution, a need exists for regular communication among element program

managers and SDIO on the activities of software testing. However, element pro- 0
gram offices are currently placing little emphasis on the processes and technology
for testing SDI element software. A workshop would provide a useful forum to dis-
cuss element program office test plans, RFP and contract clauses, and so forth.

4. SDIO should establish and actively participate in a software testing subcommittee 0

within the CRWG.

The CRWG provides a regular forum for discussing a wide variety of SDI
computer- and software-related topics. A software testing subcommittee should

function as an advisory group for element software testing activities. Members of
this subcommittee should have direct responsibilities for element testing activities.

Suggested activities for this group include the review of element software testing
plans and results of testing activities, discussion of available software testing tools,

and discussion on lessons learned from application of testing technologies.

The workshop prevloti ,y described would provide a useful indicator of the
need and timeliness of a ,2 ;vG software testing subcommittee.

22

i p

4. TECHNOLOGY EVALUATION EXPERIMENTS

The primary goal of software testing technology evaluation experiments is to
identify promising new or existing testing techniques that can add significantly to the
trustworthiness, reliability, and quality of SDI software. Of course, software testing must
also be cost-effective and affordable. New testing approaches and techniques are being
developed continuously to address software development problems. Many techniques
have been convincingly demonstrated in research environments but need improvement
and refinement before they can be broadly applied. Software developers and program
managers, understandably, are reluctant to absorb the risk of experimenting with promis-
ing but unproven technology. The technology evaluation experiments, therefore, are
intended to:

a. Identify from the collection of available software testing techniques those that
offer the greatest promise in reliably and cost-effectively detecting the most

critical defects.

b. Bridge the gap between research and routine practice, and accelerate the
transition of useful testing techniques.

c. Absorb the costs and mitigate the risks of applying new, unproven testing tech-

niques.

d. Expedite feedback to researchers and technology developers on necessary

improvements and refinements.

The principal question that should be addressed by the participants in an experi-
ment to evaluate a particular testing technique is "To what extent can the use of this test-
ing technique increase the level of assurance achieved in software we develop, and at
what cost?"

This can be subdivided into the following specific questions:

a. What measures of improved trustworthiness, reliability, or quality can be
shown? For example, higher success rates in detecting defects, detecting dif-
ferent types of defects, and detecting defects earlier.

23

0

b. What costs and cost savings are associated with the use of this particular tech-

nique? For example, training and tools required, time to apply the technique

or time saved, and run-time performance impact. 0

c. Are there any potential pitfalls that need to be avoided? For example, incom-

plete or inadequate software specifications.

d. Are there any changes to the tools or methodologies that would improve their
effectiveness in the SDI environment?

e. How could this technique be used most cost effectively in conjunction with

other techniques?

4.1 General Approach

The most effective approach to achieving these goals is to:

a. Establish the spending authority and a stable budget for software testing tech-
nology evaluation experiments.

b. Have SDI software developers, working through their program offices, pro-

pose specific experiments to evaluate testing techniques that they believe have
the potential to significantly improve the products they are developing.

c. Fund the most promising experiment proposals.

d. Plan to incorporate positive experimental results in the technology transition

activities described in Section 4.

Participation by SDI software developers and program offices in these experi-
ments is essential to moving proven testing techniques into standard practice within the

SDI community.

4.2 Experiment Scenarios

There are two general approaches for testing technology evaluation experiments.
The preferred approach is to apply a new or existing testing technique in the course of
developing non-critical path segments or componeuts within ongoing, "live" software
development projects. The alternate approach is to create parallel development pro-
jects, isolated from those producing scheduled deliverables, or separate software projects
created explicitly for experimentation.

24

4.2.1 Live Project Scenario

A hypothetical live project testing experiment may provide a useful illustration.

The Brilliant Pebbles Software Development Pla-' identifies concurrent software and

hardware development at multiple sites as risk factors [BP-SDP 1991, p. 351. Such

development requires close coordination of interfaces, which can be enhanced by

rigorous specifications. The contractor would likely use Ada package interface specifica-

tions, but this facility does not provide sufficient confidence in interface behavior. As an

experiment to improve interface coordination, the contractor proposes (hypothetically)

to develop formal protocol specifications for the required behavior across the interfaces,

and from these to generate simulations of either side of each interface for testing. Since

this is new technology with limited tools and staff experience, initial development of pro-

tocol specifications would be restricted to a small number of software components. The

selected components, however, would be pieces of deliverable, operational CSCIs.

Applying unproven technology within live projects involves some risk. If develop-

ers are accountable for this risk, very little experimentation will occur and technology

transition will be slowed. When a developer takes the risk of experimenting on his own

and gets "burned", getting him to try other new techniques will be very difficult-no

matter how successful these other techniques are. In addition, he is likely to reject the
technique that caitsed him so much trouble even after it matures and is proven to be effec-

tive. One of the key objectives of specifically sanctioning experimentation is that the risk

of new technology is recognized and absorbed at a higher level. Moreover, the risk is

reduced, however, if:

a. A non-critical-path component or subsystem within the project can be identi-

fied as the subject for the experiment. That is:

(1) The project's schedule can absorb a potential stretching of that component

or subsystem's completion schedule, and

(2) Additional man-power or expertise can be applied to overcome difficulties

that might threaten that component or subsystem's timely completion.

b. The new testing technique or approach matches the characteristics of that

component or subsystem (for example, real-time testing techniques for com-

ponents with critical timing requirements).

Two principal advantages of live project experimentation are that new techniques

are evaluated under actual operational conditions and that successful results can be

transferred more readily into routine practice. If a new technique is successful in a live

experiment, programmers working on other components and subsystems will learn about

25

0

it and want to use it to improve their work It produ,,:t qu;tA, iy rnIp1oVCd, V!id 111C Itcwr,• o!

potential cost increases or schedule impacts art dsrpclcd, tianagers o' ,.the: p111cC -,4

want their programmcrs to Use it. l)Ctcrminmg that a partictilai tcc:hnogvy oer nto, pro-

vide anticipated benefits or that it Introducc., unfolcsccll problcms is • a latoic

mation that needs to be fed back into the iresearch p,•ogan'. It doc Ilk,", n1C4n tha1 tw e

experiments or experimenters were unsuccss1tdI.

4.2.2 Parallel Development Project Scenario

The parallel development approach to technology expermcntation sets up a

separate experimental project in parallel with the actual, live de clopmcni '-ffort T'hc

parallel project takes the same requirements and specifications a% the hvc dcvelopmcwn 0
effort but, instead of (or in addition to) using the standard technologics applicd In the live

effort, the parallel project applies a selected experimental tcchnology An example of
this approach is the experimental evaluation of "ANNA" currently planned at the

National Test Facility on the Level-2 System Simulator. ANNA's formal program annro-
tations will be developed for portions of the simulator and the ANNA tools 'ill be used to

augment the testing of this code.

A significant advantage of the parallel development approach Is that it separates
the risks of the experimental technology from the live system development effort. The

applicaticn domain for the experiment is identical to the live system. The expcriment

team need not work to the same deadline schedule as the live system development, which
allows time for learning how to apply the new technology and how to operate new proto-
type tools. The only impact that such experimentation might have on the live develop-

mert effort is that it may divert a number of competent staff members from the live sTs-
tern effort.

4.2.3 Separate Evaluation Project Scenario

Technology experimentation can also be accomplished by setting up separate pro-

jects to develop similar or related software. That is, these projects do not ha,.% to

respond to the requirements and specifications of a particular live system development
effort. This approach offers much more flexibility in arranging and conducting experi-

ments because exact specifications of live system requirements are not necessary. Experi- 9
ments can proceed when the technology is ready and need not wait for the details of a

particular application for evaluation. The development specifications for the experi-

ment, however, must be sufficiently tealistic te determine the value of the technology in
actua! live system development conditions. 0

26

0

4.3 Participants

Participants in testing technology evaluation experiments should be drawn from
all SDIO program offices and contractors involved in software development. In particu-
lar, this includes the National Test Bed and Nation. Test Facility (NTF) offices, the
Army's Strategic Defense Command, the Air Force's Space Systems Command, and
their contractors. There is ample opportunity to conduct significant testing experiments
within the projects managed by these offices. Successful results from experiments con-
ducted by these groups can be applied immediately on a wider scale and turned into
revised standard testing practices.

A second tier of participants who may be able to evaluate less mature but poten-
tially high-payoff testing techniques include the Service laboratories, the National labora-
tories, and DoD and other government research agencies.

4.4 Technology Selection Criteria

Any given list ot specific candidate technologies would probably be incomplete
and would rapidly become obsolete. It might also be interpreted to mean that evaluations
of other testing methods or of new developments in testing techniques were arbitrarily res-
tricted. Rather than recommending specific technologies, therefore, v.,-, established the
following criteria to guide prospective experimenters in selecting technologies for evalua-
tion:

a. Criticality ahd applicability--To what extent does the technology address
anticipated testing deficiencies in the particular software project? For each
critical software characteristic, 3 a high rating implies the technology directly
addresses these deficiences, a medium rating implies indirect or partial appli-
cability, and a low rating implies little or no applicability.

b. Maturity and practicality of the theory-To what extent has the theory behind
a technology matured toward practical application? For maturity, a high rat-
ing implies a well-developed theory, a medium rating implies an incompletely
developed theory, and a low rating implies an undeveloped theory. For practi-
cality, a high rating implies successful practical use, a medium rating implies
demonstrated laboratory use, and a low rating implies little or no demon-
strated practicality.

3. Critical SDI software characteristics that pose significant problems for achieving high levels of assurance
include concurrent, distributed (space and ground), fault tolerant, large scale, and real time.

27

c. Availability and maturity of tools-To what extent have tools been developed

to support the practical application of a technology? A high rating implies

existence of robust, commercially available tools. A medium rating implies 0
existence of complete prototype tools that are in use by people other than the

developers. A low rating implies incomplete prototype tools that are not gen-

erally available from developers.

d. Feasibility-To what extent is the technology feasible for use on a particular 0
project in terms of cost, ease of use, and project time frame. A high rating

implies low cost, minimal training, and workable time frame. A medium rat-

ing implies moderate cost, moderate training, or tight time frame. A low rat-

ing implies high cost, extensive training, or unreasonable time frame.

e. Potential benefit-To what extent is the technology likely to benefit this and

other SDI software efforts, including full-scale development? This is a com-

posite rating that considers the effect of overlapping technologies. A high rat-

ing implies a significant contribution to software assurance not covered by

other technologies at lower cost. A medium rating implies a respectable con-

tribution not adequately covered by higher rated technologies. A low rating
implies a relatively small contribution, but one that is not adequately covered

by higher rated technologies. A rating of "covered" implies that a technol-
ogy's contributions are adequately covered by higher-rated or lower-cost tech-

nologies.

4.5 Example Technologies

To give examples of how the selection criteria above are intended to be used,

several candidate evaluation technologies were rated. In each of the subsections below

the particular testing technology is briefly described and these ratings are listed along with

a short rationale.

4.5.1 ANNA

ANNA provides a means for detecting software defects that violate assumptions

about the intended behavior of software during execution. Its mechanism for detecting

these violations provides a type of self-checking that can also be used to support fault

tolerance in addition to software testing. ANNA is an extension of Ada that adds facili-

ties for specifying these assumptions. The extensions are called "annotations" or "asser-

tions", and are based on techniques used for formal program specification. Annotations

28

can be viewed as a formal style of embedded program documentation. In fact, without

the ANNA tools, annotations are Ada comments.

Simple ANNA annotations allow software developers to specify, in a formal way,
relationships among variables that should hold at various points within a program. More

sophisticated annotations allow similar specifications for subprogram input-output rela-

tionships, conditions that should hold throughout the program for a particular variable or

for all values of a particular type, conditions surrounding exceptions and exception han-

dling, and relationships among generic parameters.

Annotations can be used early in the software development process to capture

concrete specifications and design intentions. Often, important relationships among

inputs, outputs, and internal data can be easily stated, even though producing those out-

puts may be extremely complex. ANNA provides a mechanism for specifying those rela-

tionships without having to develop the code that will compute the results.

Later, when the code is developed, the same annotations can be used in testing.
The principal ANNA tool is a translator that converts annotations into executable Ada

code that verifies the specified conditions during program execution. If one of these con-
ditions is violated at any point during execution, the violation is reported and an excep-

tion is raised. Annotation violations often reveal defects long before their effects appear

in a program's output. Several excellent descriptions on the use of annotations in pro-

gram testing are available [Luckham 1990, 1984]. One implementation and various

ANNA-related papers are available on the Internet host "anna.stanford.edu" (see the
file "pub/anna/read.me" for more details).

The five technology selection criteria for ANNA are ranked in Table 4-1.

Table 4-1. Ranked Technology Selection Criteria for ANNA

Criticality & Applicability High (with limitations for real-time components)

Maturity & Practicality High

Tool Availability Medium/High

Feasibility High (project dependent)

Potential Benefit High

Useful annotations can be added to virtually any Ada code. The only limitation
is that checking specified conditions at run-time consumes time (and, to a lesser extent,

29

memory), which may affect time-dependent computations. ANNA is based on well-

developed, practical theory. Although not commercial products, the tools available from

Stanford University are complete and robust. ANNA should be easy to incorporate in a

wide range of development projects. ANNA's formalization of a program's required

behavior and its ability to expose internal defects before their effects appear in output sig-

nificantly increase confidence in the program's correct operation.

4.5.2 Cleanroom

Cleanroom was developed at IBM and represents many years of research and
experimentation. Cleanroom is actually a complete software development methodology,

not merely a testing technique. Testing is treated much differently in Cleanroom than in

most other development approaches. Experiments with Cleanroom need not be limited

to evaluating its approach to testing, however, since other aspects of the methodology

also contribute to software quality.

At the outset, Cleanroom requires development of formal function and perfor-

mance specifications. The system must be specified in terms of its required mathematical
functionality. A design is then developed based on a state machine model of algorithms
to compute the required functions. The design is verified against the formal specifications

by rigorous logical arguments. Code is developed by teams in stages of roughly ten-

thousand line increments. The first stage is an executable system superstructure and each

additional increment adds new functionality to the system. Code is verified against the
design and the formal specifications by rigorous logical arguments.

In the strictest interpretation of the Cleanroom methodology, no unit-level testing
or debugging by code developers is allowed.4 A separate, independent team of testers is
responsible for generating and executing all tests. Tests are based on the formal system

specifications and are developed concurrently with design and code development. Tes-
ters do not use information about the design or code structure in developing the tests.

Design and code development teams do collaborate with testing teams, however, to •

assure that the requirements are accurately and unambi mously specified. Test results

and discrepancies are returned to the development team for any necessary corrections.

Complete regression testing of existing functionality is performed as each developmental

increment is added to the system.

4. The objective of this rule is to avoid hasty code modifications that can introduce new detects almost as
quickly as the original ones are corrected, when design and coding decisions need to be reconsidered.
IBM has found that conventional unit testing and debugging by programmers is not the most effective use
of their time.

30

S. . .. • . s m ! Il 30

Cleanroom also seeks to provide statistical measures of the system's reliability,
such as its mean time to failure (MTTF). To determine these measures, test data are gen-
erated randomly based on profiles of expected system use. The intended effect of using
these profiles is that frequently used functions are tested more thoroughly than seldomly
used functions. The number of needed tests is driven by the level of reliability required
and the number of defects discovered. In addition to reducing the frequency of defects
users are expected to encounter (as opposed to the number of delivered defects), this
form of statistical quality control allows management to track quality and productivity
trends.

The five technology selection criteria for Cleanroom are ranked in Table 4-2.

Table 4-2. Ranked Technology Selection Criteria for Cleanroom

Criticality & Applicability High

Matuinty & Practicality Hiigh

Tool Availability Low/Medium

Feasibility M-dium (project dependent)

Potential Benefit High

Cleanroom techniques can be applied to any software development project. It is
based on well-developed, practical theory. Many aspects of the Cleanroom approach
could be supported by tools. No integrated collection of tools has been established to sup-
port Cleanroom, although many tools are applicable. Several aspects of the Cleanroom
methodology require a moderate amount of training but otherwise it should be relatively
easy to incorporate in a wide range of development projects. Cleanroom's formal, incre-
mental development approach and its unique approach to testing offer significant poten-
tial advantages in building systems efficiently and with measured reliability.

4.5.3 Improved Structural Coverage

Structural coverage enables developers to track which parts of their software
have been exercised by various tests. The process usually involves a code instrumenting
tool, which alters the program code to cause trace data to be written to a file, and a cov-
erage analysis tool, which reports execution results in meaningful ways. Examples of the
statistics that are commonly collected include the number of times each statement is exe-
cuted, the number of true and false results at each conditional branch point, the number

31

of iterations of each loop, and the number of times each subprogram is called. Most cov-

erage analyzers can combine the statistics from several test runs to give c'imulative test

coverage results,

Ad hoc testing techniques, without the aid of coverage analysis, typically achieve

coverage of only about 50 to 60% of the code in complex systems. That is, in common

testing practice as much as half of the code in a system is not even executed. Complete,

100% coverage may be extremely difficult to achieve in final, system-level tests. Lower- 0

level unit tests, however, should guarantee that every possible statement and branch in

the code have been exercised. Without some form of coverage analysis, developers have

little information about how well their products have been tested. This is the reason for

the coverage testing requirement recommended in Appendix A.

Although basic coverage testing techniques are mature and well-supported by

automated tools, there are several areas where current research is working toward

improvements. Any of these areas could form the subject of an evaluation experiment.

They include the relative cost-effectiveness of:

a. Different types and different degrees of structural coverage (e.g., data flow
and linear code sequence and jump (LCSAJ)).

b. Automated support for deriving test data that will exercise specific branches

or code segments. 0

c. Non-invasive monitors for real-time software, which do not require code

instrumentation or alter runtime behavior.

The five technology selection criteria for improved structural coverage techniques
are ranked in Table 4-3.

Table 4-3. Ranked Technology Selection Criteria for Improved Structural Coverage

Criticality & Applicability High (with limitations for real-time components)

Maturity & Practicality Medium/High

Tool Availability Medium/High

Feasibility High

Potential Benefit High

32

Test coverage data can be collected on virtually any Ada code. The only limita-
tion is that instrumented code consumes additional time and memory during execution,
which may affect time-dependent computations. Test coverage data collection and
analysis are based on well-developed, practical theory. There are several commercial
tools that support code instrumentation and coverage reporting beyond branch coverage,
as well as non-invasive monitoring tools. Improved coverage testing should be easy to
incorporate in a wide range of development projects. Improved coverage testing tech-
niques and non-invasive monitoring tools can contribute significantly to the assurance of
correct, reliable system operation.

4.5.4 Reproducible and Deterministic Execution

Reproducible program execution is an added complication for testing introduced
by concurrency, whether the code is executed on a single central processor, on tightly cou-
pled parallel processors, or distributed over multiple loosely coupled processors.
Whereas sequential program execution can be repeated by setting up the same input con-
ditions, concurrent program executions may behave differently even with the same
inputs. This is because nondeterministic operations may produce different results. For
example, the relative progress of concurrent processes is generally unpredictable.

Correct programs produce correct results in spite of these possible variations. Incorrect
programs, however, cannot always be forced to produce incorrect results, which may
create a false sense of confidence in the program's behavior.

Concurrent processes communicate through a series of synchronization events.
The exact sequence of synchronization events is what determines the program's behavior.
For a given set of program inputs, several different synchronization sequences may be
possible, each one potentially producing different results. Developers and testers of con-
current software, therefore, must be aware of all the possible synchronization sequences
possible within the program. For all but the simplest programs, this requires automated
analysis.

Reproducible testing requires repeating exactly a particular synchronization
sequence. One approach is to transform the concurrent program into a sequential pro-
gram that contains a fixed interleaving of the original concurrent operations and effec-
tively "hard codes" the one synchronization sequence. A refinement of this technique,
called deterministic execution, can be achieved by a less drastic program transformation
and allows concurrent execution of parts of the code that cannot distort the results.

The five technology selection criteria for reproducible and deterministic execu-
tion are ranked in Table 4-4.

33

Table 4-4. Ranked Technology Selection Criteria for Reproducible and Deterministic
Execution

Criticality & Applicability High (for concurrent systems)

Maturity & Practicality Medium

Tool Availability Low

Feasibility Medium (project dependent)

Potential Benefit High

Reproducible and deterministic execution testing is applicable to all concurrent
software systems. The theory behind these techniques is reasonably well developed; how-
ever, its practicality has not been demonstrated beyond relatively small-scale laboratory
use. A number of concurrent system testing and debugging tools have been described in
the literature, but few of them appear to be readily available outside their development
laboratories. Experiments with reproducible and deterministic execution testing would
likely incur moderate tool installation and maintenance costs, as well as moderate train-
ing costs. These techniques promise significant advantages for testing concurrent systems
because conventional testing techniques provide essentially no support in this critical
area.

4.5.5 Software Fault-Tree Analysis

System safety engineering is a process of identifying hazards, assessing the risks 9
they represent, and then designing safeguards that eliminate the hazards or reduce the
risk factors to acceptable levels. A "hazard" in this context is any set of conditions where
unacceptable damage, injury, or other loss is possible. The "risk" associated with a
hazard is directly related to the likelihood of the hazard occurring, the likelihood that the
hazard will lead to an accident, and the potential loss or cost incurred by such an
accident. It should be clear that malfunctioning software in weapons control systems can
easily contribute to high-risk, hazardous conditions.

Fault-tree analysis is a technique of analyzing systems for conditions that could
lead to hazardous system states. This technique traces potential accidents back through
the events and conditions that would enable them to occur. Once hazards are recognized,
the system can be designed to avoid them or to include safety devices such as pressure
relief valves, electrical interlocks, and warning indicators.

34

Si i | ! i I0

Fault-tree analysis can also be applied to software and is particularly valuable for
software in embedded computer systems. Sources of software defects that can contribute
to hazards include coding mistakes, design flaws, and defects in requirements and specifi-
cations. System developers must first verify that software requirements are consistent
with the system's safety criteria. This is essential so that the software developers can
address in their designs any critical conditions or events that the software must either
avoid or ensure. System hazards can then be mapped into corresponding unsafe software
outputs and the software can be analyzed to determine under what conditions unsafe out-
put might be produced. In addition to avoiding certain hazards the design can include
run-time software safety checks. These checks generally require little processing time but
can add significantly to overall system safety.

The five technology selection criteria for software fault-tree analysis are ranked
in Table 4-5.

Table 4-5. Ranked Technology Selection Criteria for Software Fault-Tree Analysis

Criticality & Applicability High (for fault-tolerant and safety-critical systems)

Maturity & Practicality High

Tool Availability Low

Feasibility High

Potential Benefit High

Software fault-tree analysis is generally applicable and of particular value in
embedded real-time computer systems. It is based on well-developed, practical theory.
At present, software fault-tree analysis is primarily a manual process, although prototype
tools are being developed. With improvements in tool availability, software fault-tree
analysis should be easy to incorporate in a wide range of embedded system development
projects. Avoiding recognized hazards or detecting and responding to unsafe conditions
at run-time significantly increases confidence in a system's safe operation.

4.6 Recommendations

1. SDIO should annually budget for several software testing experiments to identify
promising new testing techniques.

35

Historically, SDIO has not provided funds for software testing experimenta-

tion. In fiscal year 1992, funds were allocated for an initial NTF experiment with

ANNA. Such efforts should be encouraged, and it is hoped that additional experi-

mentation will occur. However, the scope of experimentation must be broadened

and expanded.

SDIO should solicit specific testing experiment proposals from development

organizations (e.g., Army Strategic Defense Command, Air Force Space Systems

Division) that play key roles in GPALS software development. The proposals need

significant input from the contractors, so the solicitations need to filter down to

them. SDIO should also coordinate with Service research and development agen-

cies, such as the Naval Research Laboratory and Rome Laboratory, to identify

promising avenues of experimentation.

2. SDIO should provide recognition for innovations in software testing that evolve from

these experiments.

Achieving the necessary levels of assured software performance and relia-

bility will require identifying and applying new solutions to software testing prob-

lems. One of the fastest ways to advance the current state of testing practice is to

reward innovative application of new, but unproven, tools and techniques.

Software testing activities are sometimes viewed as counterproductive by develop-

ment teams. As software development deadlines approach, improved testing can

mean that more corrections and rework are required. Program offices, however,

must take a broader view and recognize that improved testing leads to improved

products. Rewards for innovation in testing may include letters of commendation,

presentations to the SDI community, and notice in internal publications.

3. SDIO should plan to incorporate positive experimental results in technology transition

activities.

The goal of these experiments is to identify technology that can improve

current software testing capabilities. As positive experiment results appear, SDIO

should ensure that the results are communicated to the SDI software development

community. Avenues for this communication include presentations at CRWG meet-

ings, updates to established software testing standards, and revisions to RFP and

contract Statement of Work requirements for software testing practices.

36

z - •,, w0

5. RESEARCH PROJECTS

* The goal of the research part of the testing initiative is to address several funda-
mental problems of testing large-scale, concurrent, distributed, real-time, and fault-
tolerant software systems. Current methods and techniques for testing such systems can-
not provide the level of assurance of correct operation, safety, and reliability necessary

for SD! softtre. Without solutions to these problems, SDI software is likely to contain
latent defects that could compromise the success of SDI's mission.

The general approach of this research program includes:

a. Strengthening the scientific basis for software testing methods, tools, and

metrics. Many commonly used testing approaches are ad hoc and produce
variable results. Automated tools help make testing easier and more sys-
tematic, but the technology underlying current tools lacks sufficient basis for
predicting or drawing other conclusions about a system's correct operation,
safety, and reliability.

b. Scaling up testing capabilities to rigorously test large, complex software sys-
tems. Because of their complexity, interactions among components of large
systems cannot be tested exhaustively. It is relatively easy to demonstrate,

however, that partial application of current testing techniques does not
achieve sufficiently high levels of confidence.

c. Promoting collaborative efforts between researchers and system developers.

The most effective way to direct the necessary research and to transform
research results into practical testing techniques is to combine the interests
and efforts of the research and system development communities.

This research program must focus on developing and extending innovative
approaches to software testing that have the potential to significantly advance the state of
the art and practice. That is, the research should be directed toward breakthroughs that
will enable rigorous, systematic, and repeatable testing of software systems. Incremental

improvements in current testing techniques that reduce the cost of testing or extend the

range of software characteristics that can be tested are also expected. Incremental
improvements alone, however, are not likely to achieve the significant results required for
assuring the correct operation, safety, and reliability of SDI systems.

37

0

Specific areas requiring attention include:

a. Methods for testing highly reliable, real-time, concurrent, and fault-tolerant

software. These attributes characterize many critical software components in

SDI elements. Software with any one of these attributes is difficult to test,

and they usually occur together. Current techniques cannot adequately test

software that combines all of these attributes as SDI software will.

b. Methods that scale up for testing very large software systems containing mil-

lions of lines of code. Small programs can be tested relatively easily. The

same testing methods and techniques, however, do not scale up to large-scale
software systems. Testing large-scale SDI systems will require more than sim-

ply expanding the number of small-scale tests. 0

c. Methods that scale up for testing software that may be distributed across sys-

tems containing potentially hundreds of processors. Distributed software sys-

tems are time sensitive, concurrent, and fault tolerant. In addition, there may

be significant latencies in communications among components and strict syn- 0
chronization of concurrent activities is impossible. This means that testing

must be accomplished without complete control over the system under test
and without complete knowledge of the system's state. Ad hoc techniques

that have been used to test small-scale distributed systems cannot be relied

upon to meet SDI's needs for assuring large systems.

d. Methods for evaluating and testing software system requirements and designs.

The cost of correcting defects in software grows exponentially as the time
between their introduction and detection increases. In particular, require-

ments and design defects that are not discovered until integration and system

testing often cause significant budget and schedule overruns. Formal

methods, for example, may prove useful in rigorously specifying requirements

and designs. The focus of these techniques, however, has to change from
proving the correctness of small-scale programs to modeling and prototyping 0
large-scale systems.

5.1 Anticipated Benefits

The anticipated benefits of results produced from this research will help assure
the correct operation, safety, and reliability of SDI software. Specifically, this will be
achieved by developing new testing methods and techniques that will enable early, sys-
tematic detection of latent software defects that currently cannot be reliably detected.

38

,, II i !

Further benefits include increased understanding of software defects and how they can be

prevented and detected, increased visibility into software reliability throughout the

development process, and reduction of the cost and time required to achieve specifi-,

levels of confidence in the correct operation, safety, and reliability of complex software

systems.

5.2 Evaluation Criteria

Research proposals and the progress of on-going research projects must be scru-

tinized to ensure that the most promising, high-payoff ideas are supported. The following

criteria are recommended for evaluating proposed research projects:

a. Relevance, utility, and potential impact of the research. Software developers

are on the front lines facing the difficulties of adequately testing software.

They know where the problems lie and, therefore, should be consulted, along
with testing experts, in evaluating the relevance and potential impact of pro-

posed research.

b. Innovative character and intrinsic merit of the research. This will require
evaluation of proposals and progress papers by recognized experts in the

software testing field. Several reviews of proposals and progress papers

should be sought to ensure balanced evaluations.

c. Costs and anticipated lead time for results that could be applied and
evaluated in SDI software. Although this program is intended to address the

more fundamental research issues in software testing, costs and lead time

must be considered in selecting proposals.

d. Qualifications, competence, and productivity of the research team. Results of

previous research are good indicators of competence and productivity. Highly

relevant and innovative ideas from new groups or individuals, however,
should also be considered along with good ideas from researchers with suc-

cessful track records.

e. Collaboration with and cost sharing by industrial partners. Active participa-
tion in research programs by companies with substantial software business

bases is often a good indicator of promising ideas. It also helps focus research

to ensure relevant and useful results. Such companies often have experience
moving research results quickly from the laboratory into practice. Coopera-

tive funding of research by government and the private sector, therefore,

should be encouraged.

39

5.3 Participants

[hcrc arc three tn.tior ~ ic ori ~' ;rwI~~t' i h t~ .hptklO:r n

"I Recwarch 1ao

c Research tuudI11 aii4ic'.

.At present there arc relatlrcly fte recogni,,cd centers of academic and Idu.trial
research that focus on -oftware t-sting. O)n approach to stimulating Innovative softwaze
testing research is to expand this research base. Universities are cxpctced to ptojid.
most of the primary investugators from their faculties and graduate student populatwný.
Industry. military, and other government software laboratories may providc additional
researchers.

Fxperimental evaluation of new testing techniques is a key part of the testing ini-
tiative. Industry, military, and other governmen. software laboratories, in particular the
N'IT and Naval Research Laboratory (N, .L), are expected to play important roles in
these evaluations. SDI element development sites offer additional opportunities to evalu-
ate prototypes of testing tools as they emerge from the -"search program.

Military and government research agencies such as the Defense Advanced
Research Projects Agency (DARPA), Office of Naval Research (ONR), Rome Labora-
tory, and the National Science Foundation (NSF) provide natural channels for funding
and .dministering software testing research. Both NSF and DARPA are considering
plans to sponsor a basic research program in software testing. The Navy is sponsoring a
dependable computing initiative and a real-time software initiative through ONR, and a
large research program in engineering complex systems through the Naval Surface
Weapons Center. SDI's resources could be joined with these programs to gain additional
leverage.

5.4 Recommendations

1. SDIO should establish and fund a long-term research program to improve testing
capabilities for large-scale, concurrent, distributed, real-time, and fault-tolerant
software systemnc,

A sustained, long-term research program would likely need on the order of
$1 million per year for five years. This amount is likely to produce useful results
within the available time frame. Given the current shortage of active testing

4

40@

I II I I I I0

research investigations, it was judged that much more than this amount could not be

* applied productively toward SDI's needs. TO revitalize an active software testing

research community it is imprtant that this program is recognized as a sustained,
multi-year effort. Stop-and-start funding will defeat program objectives. Also

spreading the money thinly over too many intermediate funding agencies cotwd

dilute the program's impact. By taking a leadership position in establishing this

* program, SDIO can expect other research funding agencies to cooperate and

perhaps even contribute additional resources of their own to extend the program.

2. Once the research program is initiated, SDIO should closely monitor the progress and

* effectiveness of research projects. Methods for advanced experimentation and

evaluation of research results should be developed.

Annual reviews of ongoing research projects should be conducted.

Renewed funding should be contingent on demonstrated progress and on the expec-

• tation of useful results. In addition, annual workshops should be held where both

research ideas and practical problems of testing SDI software can be presented and

discussed. This mix of theory and practice should proviJe two-way communication
between researcher and practitioner, accelerating the transition of new research

results into practice and feeding practical utility and relevance information back

into the research process.

0

41

APPENDIX A

SUGGESTED RFP AND CONTRACT CLAUSES

This appendix contains draft Request for Proposal (RFP) and contract clauses

* suggested for use in SDI software procurements. Rationale is provided for each of the
clauses, and the clauses are identified by indented margins and single-spaced text. DoD-
STD-2167A requires a Software Development Plan (SDP) to be included as part of an
RFP response. The requirements specified below refer to sections of this plan as
described in Data Item Description (DID) DI-MCCR-80030A. In addition, the following
definitions are used:

Operational Software: includes all software necessary to operate or control any sys-
tem of which it is a part.

* Support Software: includes all ancillary software developed under this contract to
produce, configure, test, install, or maintain operational software.

A.1 Inspections

Inspections have been found to be two to four times more cost-effective in detect-
ing code defects than execution-based testing [Russell 1991]. Furthermore, inspections
often find up to 80% of all code defects. An operating system development organization
found that design defects were found in one sixth the time by inspections [Ackerman

• 1989]. Inspections are not only more cost effective than many execution-based testing,
they can also find defects that are difficult to find using c"',-tion testing techniques.
Although the practice of inspections will require a major comnument of time and funds,
their proper application will reduce overall system development costs. Additional evi-
dence of the value of inspections can be found in the literature [Fagan 1986, Humphrey

• 1989, Weinberg 1984J.

Inspections are consistent with DoD policy. DoD Instruction 5000.2 states that
"walk-throughs, inspections, or reviews of requirements documents, design, and code...
should be used." Formal inspections differ from walk-throughs and informal reviews,

* however. In particular:

a. Formal inspections reqaire that specific roles be filled and that certain pro-
cedures be followed. Key roles include those of inspection moderator, author,
reader or paraphraser, and recorder or scribe. Training for all participants in

43

the objectives and procedures is recommended. Inspection moderators

should have had special training in how to conduct inspections. Procedures

include use of checklists to ensure that thorough checks are made for specific,

frequently occurring types of defects.

b. Management is usually excluded from inspections. The objective of inspec-

tions is to expose technical problems, not to evaluate employee performance.

Without management present, reviewers tend to find more defects. These

defects are also less expensive to correct because they are discovered earlier

in the development process.

c. Formal inspections cover small segments of requirements, designs, or code in

great detail. Inspection effectiveness has been found to be directly related to

the rate that material is covered [Russell 1991, Fagan 19861. Attempting to

cover more than four to five pages of detailed text or code in a two-hour

inspection significantly reduces inspection effectiveness. Inspection meetings

that last longer than about two hours, inspections scheduled back-to-back,

and participating in more than two inspections per day all reduce effective-

ness.

d. Formal inspections require a small number of participants. The optimal

working group size for inspections is on the order of five to eight people.

Larger groups require more organization to convene and uncover fewer prob-

lems.

e. Formal inspections require preparation on the part of reviewers. Reviewers

may spend on the order of three to five hours studying work products and
related material to prepare for each review. Russell reports that a useful

rule-of-thumb for estimates of code inspection resources in elapsed time is

three times the number of thousand-lines of code inspected [Russell 1991].

While this may seem like a great deal of time, it is one half to one sixth the
time necessary to find and fix program defects later in the development pro-

cess.

Like all other forms of testing, inspections alone cannot reveal all defects, so

while inspections provide a cost-effective method for revealing a large proportion of

defects, execution-based testing is still necessary.

44

Suggested clauses for inspections:

All operational and support software designs and code shall
undergo formal inspections, similar to those described in [Fagan 1976] and
[Fagan 19861. Proposals shall describe, in Section 4.2.1 of the SDP, how
formal design and code inspections will be implemented, and shall include
proposed inspection checklists for both design and code. In addition, the
following process documentation is required:

a. During software design, the contractor shall provide monthly
summary statistics of the design inspection process. This sum-
mary shall include the number of design units inspected, along
with the number, type (as denoted in the checklist), cause, and
resolution of defects detected.

b. Prior to the Critical Design Review (CDR) a signed statement
shall be provided verifying that the designs for each Computer
Software Configuration Item (CSCI) have been fully inspected.

c. During software coding, the contractor shall provide monthly
summary statistics of the code inspection process. This sum-
mary shall include the number of Computer Software Units
(CSUs) inspected, along with the number, type (as denoted in
the checklist), cause, and resolution of defects detected.

d. Prior to the beginning of CSCI integration, a signed statement
shall be provided verifying that all code units have undergone
formal inspection.

A.2 Structural Test Coverage

Structural testing requires that every instruction or expression of a program be

executed or evaluated at least once during testing. Structural coverage does not imply

correctness but is a confidence raising technique. The fact that each statement, say, has

been executed does not mean the statement is correct. We can, however, have more con-

fidence in that statement than one that has never been executed during testing. Clearly, if

an instruction has never been exercised by any test, there is no evidence that this instruc-

tion will work correctly when executed in operation.

There are several levels of structural testing. The simplest is statement coverage,
which requires every statement to be executed at least once by some test. Multiple tests

are almost always necessary to achieve 100% coverage. Little confidence can be gained

from statement coverage, because very few logic flows are exercised during this type of

testing. The next level is branch coverage, which requires every possible branch direction

to be traversed at each decision point. Branch coverage encompasses statement

45

coverage. Higher levels of coverage require more complex combinations of code be exer-

cised, and may therefore require more test cases to achieve full coverage.

Complete branch coverage is feasible at the unit (subprogram) level. There are
many commercial off-the-shelf (COTS) tools available, such as test harnesses, that sup-
port branch coverage testing [Sittenauer 1991, Youngblut 19911. As :-,ftware components
are assembled and integrated into subsystems, controlling the execution of individual
statements and branches within low-level components becomes successively more diffi-
cult. For large systems with many components and subsystems, full structural coverage
testing of the entire system-top to bottom-is often impractical. In this case, a stratified
approach that tests components and subsystems separately should prove adequate. That
is, as tested components are assembled into larger subsystems, only the upper layers of

program structure need to be tested to satisfy the coverage requirement.

Complete structural coverage does not guarantee that a program will always exe-
cute correctly. A program can succeed in some cases (several of which may have been
tested) yet fail in others, under different conditions. Still, this type of testing generally
has the highest defect yield of all execution testing techniques [Humphrey 1989, p. 196].

Structural test coverage is consistent with DoD policy. DoD Instruction 5000.2
states that "rigorous testing of modules and interfaces at all levels of aggregation ...
should be used." Other organizations also believe it is practical and already require such
coverage. For example, the United Kingdom Ministry of Defense requires complete
(100%) branch testing in its interim Defense Standard 00-55 (Section 33.2) [MoD 1991, p.

191.

Suggested clauses for structural test coverage: 0

In addition to the functional testing required by DoD-STD-2167A,
all operational software shall be tested to achieve the following levels of
structural test coverage:

a. All statements.

b. All branches for both true and false conditions, and case state-
ments for each possibility, including "otherwise" (e.g., the Ada
"when others ->" construct).

c. All loops for zero, one and many iterations, covering initializa- 0
tion, typical running and termination conditions.

Prior to the Test Readiness Review (TRR), a signed statement
shall be provided verifying that items (1) through (3) have been satisfied.
The test suite implementing (1) through (3) will be examined by the

46

"0

contracting agency during the TRR. Proposals shall describe, in Section
4.2.1 of the SDP, how structural test coverage will be implemented.

A.3 Regression Testing

Regression testing (identified as "retesting" in DoD-STD-2167A) is required for
all operational software that undergoes change. Modifications of software to correct
defects often result in the introduction of new defects. As high as 60% of code changes
have been found to result in new defects [Humphrey 1989, p. 3831. Therefore, even the
simplest, most trivial changes must be considered suspect, and the unit and systems that
use it need to be retested. This contract clause extends the retesting required by DoD-

STD-21j7A to include structural coverage testing.

Suggested clauses for regression testing:

Regression testing (described as "' testing" in DoD-STD-2167A)
is required for all operational software that undergoes change. Regression
testing shall include the functional tests required by DoD-STD-2167A and
the complete set of structural coverage tests described in Item 2, above.
All necessary regression testing shall be completed prior to system accep-
tance. Proposals shall describe, in Section 4.2.1 of the SDP, how regres-
sion testing will be implemented.

A.4 Testable Requirements

DoD-STD-2167A requires that all specified software requirements must be
testable. This contract clause requires the developer to explain how they will ensure that
this is the case. By focusing attention on this problem at an early stage, it attempts to
avoid the introduction of meaningless requirements such as "shall be user friendly" and
"shall give good performance" that cannot be tested.

Suggested clauses for testable requirements:

DoD-STD-2167A requires that all software requirements docu-
mented in the System Requirements Specification (SRS) must be testable.
A requirement is designed to determine whether the requirement is met by
the software.

47

A.5 Automated Testing Tools

Performed manually, testing can be very labor intensive and is often incomplete.
Automated testing tools can reduce the labor required and ensure that complete sets of
applicable tests are run. There are many COTS tools available that support testing [Sit-
tenauer 1991, Youngblut 1991]. This contract clause requires the developer to identify the
testing tools currently used and those planned to be used on this project.

Required use of are automated testing tools is consistent with DoD policy. DOD
Instruction 5000.2 states that "automated tools... should be used."

Suggested clauses for automated testing tools:

Proposals shall describe, in Section 4.2.1 of the SDP, the methods
and techniques that will be implemented to ensure that software require-
ments are testable. Proposals shall list, in Section 6.2.2 of the SDP, the
automated tools that support static, dynamic and coverage analysis, and
regression testing. Proposals shall identify those tools that are currently in 0
use and those that are to be developed or acquired.

A.6 Error Cause Analysis

Error cause analysis enables contractors to determine why defects occurred and
modify their development and quality assurance processes so that similar defects will not
recur. Unless error cause analysis is performed the same problem can continue to cause
new defects [Humphrey 1989, p. 364; Myers 1988, p. 93].

The requirement for error cause analysis is consistefAt with DoD policy. DoD
Instruction 5000.2 states: ".... ensure that the contactor establishes a uniform software

defect data collection and analysis capability to provide insights into reliability, quality,
safety, cost, and schedule problems. The contractor should use management information
to foster continuous improvements in the software development process, to increase first •
time yields, to reduce test problems, and to reduce occurrences of software problem
reports."

Suggested clauses for error cause analysis:

Proposals shall describe, in Section 3.10 of the SDP, how error
cause analysis will be used to identify systematic sources of defects and to
improve software development and testing processes.

48

"A.7 Reliability Analysis

Current methods of software reliability analysis track software defects throughout
the development cycle and into operation. From this data estimates of the number of
remaining defects and the probability of operational failures are derived. Although these
techniques are relatively immature, they provide the only available concrete estimates of
system reliability. In addition, the historical record of defect discovery and removal is
expected to remain an important factor as reliability analysis techniques are improved.
Since this data cannot be reconstructed after the fact, it must be collected as part of the
development process.

Suggested clauses for reliability analysis:

Reliability analysis of all operational software is required. Propo-
sals shall describe, in Section 4.2.1 of the SDP, how reliability levels will
be assessed. A report of the reliability assessments for each CSCI shall be
provided prior to system acceptance.

A.8 Test Effectiveness and Progress

The use of a limited set of product and process measures can provide a program
office with better insight into testing activities. This insight can reveal potential schedule
or cost slippages when there is still time to take appropriate action. Defect detection rate
is one fundamental measure. Here the basic mapping of the number of defects found per
KLOC against time provides an indirect indication of both the growth in software quality
and test progress. It can be extended in several ways. For example, the defect detection
rate can be contrasted with the correction rate to indicate if debugging is becoming an
obstacle to test progress. When an estimate of the total defects to be found is also
included, the variance between defects estimated and corrected provides an estimate of
progress towards completion. Additional measures can be used to focus attention on
known problem areas. It is widely agreed, for example, that changes can be several times
more defect prone than new code (Humphrey 1989, pp. 383, 439]. Consequently, in a test
effort where frequent changes are required to accommodate evolving requirements, a
manager might request data on the relative defect rate versus the percentage of modifica-
tions.

Tracking the test progress starts with knowledge of what is to be done and the
results expected. In other words, a test plan that specifies the needed testing is a prere-
quisite for objectively assessing how much testing remains to be performed. Depending on
the information provided in the test plan, there are a variety of measures that can be

49

used. When the test plan specifies a required level of structural coverage as a stopping

criteria, for example, the number of modules that have successfully reached the required
coverage level provides an indicator of early testing progress. When specific test cases are
defined, the total tests planned, test ready to run, tests run, and tests run successfully can

be contrasted.

Suggested clauses for test effectiveness and progress:

Proposals shall describe the measures that will be instituted to
monitor test progress and software quality growth. Information on the
corresponding data collection and analysis procedures, and supporting
tools, will also be provided. In addition, once software design activities
commence, the contractor shall provide bi-annual reports on trends on test
effectiveness using both the data discussed here and that gained in the
course of error cause analysis. The purpose of these reports will be to pro-
mote the identification of good development and testing practices so that
other contractors can be encouraged to employ these approaches as
appropriate.

50

REFERENCES

[Ackerman 1989] Ackerman, A. Frank, Lynne S. Buchwald, and Frank H. Lewski.
1989. Software Inspections: An Effective Verification Process. IEEE
Software 6/3 (May): 31-38.

[Alberts 19761 Alberts, D.S. 1976. The Economics of Software Quality Assurance.
Proceedings AFIPS National Computer Conference, vol. 45, June
7-10, New York, NY: AFIPS Press.

[Boehm 19701 Boehm, Barry W. 1970. Some Information Processing Implications
of Air Force Space Missions: 1970-1980. Memorandum
RM-6213-PR: Rand Corporation.

[Boehm 1981] Boehm, Barry W. 1981. Software Engineering Economics. Engle-
wood Cliffs, NJ: Prentice-Hall.

[BP-SDP 1991] Software Development Plan for the Pre-Engineering and Manufac-

turing Development Phase of the Brilliant Pebbles System. 20
November 1991. CDRL Sequence No. A008.

[Brykczynski 1990] Brykczynski, Bill R., Reginald N. Meeson, and Christine Young-
blut. October 1990. A Strategic Defense Initiative Organization

Software Testing Initiative. IDA Paper P-2494. IDA: Alexandria,
VA.

[Cohen 1985] Cohen, Danny, study chairman. 1985. Eastport Study Group, Sum-
mer Study 1985.

[DeMillo 1987] DeMillo, R.A., W.M. McCracken, R.J. Martin, and J.F. Passafi-
ume. 1987. Software Testing and Evaluation. Redwood City, CA:
Benjamin/Cummings Publishing Co.

[Dunn 1984] Dunn, R.H. 1984. Software Defect Removal. NY: McGraw-Hill.

[Fagan 1976] Fagan, Michael E. Design and Code Inspections to Reduce Errors
in Program Development. 1976. IBM Systems Journal 15/3:
182-211.

51

[Fagan 19861 Fagan, Michael E. Advances in Software Inspections. IEEE Tran-
sactions on Software Engineering 12/7 (July 1936): 744-751.

[Fletcher 1983] Fletcher, James C., study chairman. 1983. Report of the Study on
Eliminating the Threat Posed by Nuclear Ballistic Missiles. SDIO:
Washington, DC.

[Humphrey 1989] Humphrey, W.S. 1989. Managing the Software Process. Reading,
MA: Addison-Wesley.

[IEEE 1987] IEEE Computer Society. Draft Standard of: A Standard Classifica-
tion for Software Errors, Faults, and Failures. December 1987.
IEEE Computer Society. 0

[Kolkhorst 19881 Kolkhorst, B.G., and A.J. Macina. 1988. Developing Error-Free
Software. IEEE Aerospace and Electronic Systems (November):
25-31.

[Luckham 1984] Luckham, D.C. and F.W. von Henke. September 1984. An Over- 0
view of ANNA, A Specification Language for Ada. Stanford

University. CSL-TR-84-265. Also published in IEEE Software 2/2
(March 1985): 9-24.

[Luckham 19901 Luckham, D.C. 1990. Programming with Specifications. New York: 0
Springer-Verlag.

[MDA 1991] National Defense Authorization Act for Fiscal Years 1992 and 1993.
Conference Report to Accompany H.R. 2100. November 13, 1991.
Washington D.C.: Government Printing Office. 0

[MoD 1991] United Kingdom. Ministry of Defense (MoD). The Procurement of
Safety Critical Software in Defence Equipment. Part 1: Require-
ments. Ministry of Defence, Interim Defence Standard 00-55. 5
April 1991. •

[Myers 1979] Myers, Glenford J. 1979. The Art of Software Testing. New York:
John Wiley & Sons.

[Myers 19881 Myers, W. 1988. Shuttle Code Achieves Very Low Error Rate. IEEE
Software (September): 93-95.

[Parnas 1985] Parnas, David L. 1985. Software Aspects of Strategic Defense Sys-
tems. American Scientist (September-October): 432-440.

0

52

0

[Russell 1991] Russell, Glen W. 1991. Experience with Inspection in Ultralarge-

Scale Developments. IEEE Software 8/1 (January): 25-31.

[Sittenauer 1991] Sittenauer, Chris, Greg Daich, Dolly Samson, Debbie Dyer, Gordon

Price, John Hugie, and Gary Petersen. Software Test Tool Report.

Hill AFB, UT: Software Technology Support Center.

* [Weinberg 1984] Weinberg, Gerald M. and Daniel P. Freedman. 1984. Reviews,
Walkthroughs, and Inspections. IEEE Transactions on Software

Engineering 12/1 (January): 68-72.

[Youngblut 1989] Youngblut, Christine, Bill R. Brykczynski, John Salasin, Karen D.

* Gordon, and Reginald N. Meeson. February 1989. SDS Software

Testing and Evaluation: A Review of the State-of-the-Art in Software

Testing and Evaluation with Recommended R&D Tasks. IDA Paper

P-2132. IDA: Alexandria, VA.

* [Youngblut 1991] Youngblut, Christine, Reginald N. Meeson, and Bill R. Brykczynski.

October 1991. An Examination of Selected Commercial Software
Testing Tools. Alexandria, VA: IDA Paper P-2628.

53

0

ACRONYMS

BE Brilliant Eyes
BP Brilliant Pebbles
CDR Critical Design Review
COTS Commercial off the Shelf
CRWG Computer Resources Working Group
CSCI Computer Software Configuration Item
CSU Computer Software Unit
DARPA Defense Advanced Research Projects Agency

0 DID Data Item Description
DOD Department of Defense
DR Discrepancy Report
FQT Formal Qualification Testing
FSD Federal Systems Division
GBI Ground Based Interceptor
GBR Ground Based Radar
GMD Global Missile Defense
GPALS Global Protection Against Limited Strikes

* IDA Institute for Defense Analyses
IEEE Institute for Electrical and Electronics Engineers
KSLOC K (thousand) Source Lines of Code
LCSAJ Linear Code Sequence and Jump
MTITF Mean Time to Failure

* NASA National Aeronautics and Space Administration
NMD National Missile Defense
NRL Naval Research Laboratories
NSF National Science Foundation

0 NTDS Naval Tactical Data System
NTF National Test Facility
ONR Office of Naval Research
RFP Request For Proposal
SAGE Semiautomated Ground Environment

55

0i

SiDC Strategic I)etcnsc ('ommanid

SDI Strategic)efense Initiative

SDIO Strategic l)efense Initiative Orguiiza'ion
SDS Strategic Defense Systcm

SDI' Software Development Plan
SEE Software Engineering Environincl,

SOW Statement of Work

SRS System Requirements Specification
STD Software Testing Description

ST[Software Test Plan
STR Software Test Report
TMID Theater Missile Defense

TRR Test Readiness Review

uS United States

5

B

B

B

B

56

m m m m

